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Randomized experiments are the gold standard for investigating the causal effect

of treatment on a population. In this dissertation, we present algorithmic advances for

three different problems arising in the design and analysis of randomized experiments:

covariate balancing, variance estimation, and bipartite experiments.

In the first chapter, we describe an inherent trade-off between covariate balancing

and robustness, which we formulate as a distributional discrepancy problem. In order

to navigate this trade-off, we present the Gram–Schmidt Walk Design which is based

on the recent discrepancy algorithm of Bansal, Dadush, Garg, and Lovett (2019). By

tightening the algorithmic analysis, we derive bounds on the mean squared error of the

Horvitz–Thompson estimator under this design in terms of a ridge regression of the

outcomes on the covariates, which we interpret as regression by design. We carry out

further analysis including tail bounds on effect estimator, methods for constructing

confidence intervals, and an extension of the design which accommodates non-linear

responses via kernel methods.

In the second chapter, we study the problem of estimating the variance of treat-

ment effect estimators under interference. It is well-known that unbiased variance

estimation is impossible without strong assumptions on the outcomes, due to the

fundamental problem of causal inference. Thus, we study a class of conservative es-

timators which are based on variance bounds. We identify conditions under which



the variance bounds themselves are admissible and provide a general algorithmic

framework to construct admissible variance bounds, according to the experimenter’s

preferences and prior substantive knowledge.

In the final chapter, we present methodology for the newly proposed bipartite

experimental framework, where units which receive treatment are distinct from units

on which outcomes are measured, and the two are connected via a bipartite graph.

We investigate a linear exposure-response assumption which allows more complex

interactions. We propose the Exposure Re-weighted Linear (ERL) estimator which

we show is unbiased in finite samples and consistent and asymptotically normal in

large samples provided the bipartite graph is sufficiently sparse. We provide a variance

estimator which facilitates confidence intervals based on the normal approximation.

Finally, we present Exposure-Design, a correlation clustering based design for

improving precision of the ERL estimator.
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Chapter 1

Introduction

1.1 Overview

Randomized experiments are widely regarded as the gold standard for investigating
the causal effect of a treatment on a population. Since their modern inception in the
early twentieth century, randomized experiments have been used in a wide variety of
fields, from agricultural and medical research to the economics of global development.

Many, if not most, statistical problems in the design and analysis of randomized
experiments are inherently computational in nature. One of the primary problems is
to construct an experimental design—that is, the distribution of random treatment
assignments (say, drug or placebo) to participants in the experiment—to meet cer-
tain specifications. There are a number of possible specifications an experimenter
may desire: one is to randomly assign participants to treatment and control groups
which are, with high probability, similar with respect to all observable characteristics.
Another specification is to limit the interaction between the treatment groups, given
a fixed interaction model. When only two treatment assignments are considered in
the experiment, these problems may be rephrased as constructing a distribution over
vertices of the hypercube which meet certain specifications. How to construct an effi-
cient sampling algorithm meeting these specifications, or even to determine whether
such a distribution exists, are computational questions which may be informed by the
growing body of work on sampling algorithms in theoretical computer science.

In this dissertation, I focus on three statistical problems arising in the design
and analysis of randomized experiments, which are fundamentally computational in
nature:

• Covariate Balancing: Experimenters can often obtain pre-treatment covari-
ates of the subjects, e.g. age, weight, income, gender. Under a fully randomized
experimental design, randomly assigned treatment groups typically differ in one
or more of the covariates. Experimenters sometimes choose experimental de-
signs which are less random, but produce more balanced treatment groups. How
does balancing covariates between treatment groups affect precision of the treat-
ment effect estimator? Can we construct an experimental design which balances
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covariates in a near-optimal manner? In Chapter 2, we describe an inher-
ent trade-off between covariate balance and robustness in experimental design
and present GSW-Design, a discrepancy-theoretic experimental design which
provably navigates this trade-off in a near-optimal way.

• Variance Estimation: The treatment effect is estimated via a randomized
experiment, so our estimator of the effect is a random variable. In order to
investigate the precision of the estimator and construct confidence intervals, an
experimenter needs to have a good sense of its variance. How can we estimate
the variance of our estimator from just one run of the experiment? This prob-
lem becomes more challenging in the presence of interference, where interactions
between units affects observed outcomes. In Chapter 3, we show that no uni-
versally best variance estimator exists and provide an optimization framework
for constructing an admissible variance estimator under arbitrary interference.

• Bipartite Experiments: The recently introduced bipartite experimental frame-
work formalizes experimental settings where the units of treatment differ from
the units on which outcomes are measured. This scenario arises in a variety of
research areas from public health interventions to marketplace strategies. How
can we estimate treatment effects under complex interactions between the two
groups of units? In Chapter 4, we present the Exposure Reweighted Linear
(ERL) estimator and Exposure-Design, the later based on a correlation-
clustering formulation, for estimating treatment effects in a bipartite experiment
under a linear exposure-response assumption.

The connections made between experimental design and computation in this dis-
sertation only scratch the surface. Experimental methods have a wealth of problems
that can be informed by the use of sophisticated computational techniques. Likewise,
these statistical problems may drive new developments in the study of algorithms. It
is my opinion that this connection will provide many fruitful research directions.

The intended audience of this dissertation are statistical methodologists working
in design-based causal inference as well as computer scientists interested in algorithm
design and analysis. It is my hope that the causal inference problems we consider
and the computational techniques we propose will be relevant and interesting to both
communities. For the sake of clarity and conciseness, I have chosen to focus on the
presentation and interpretation of mathematical results, rather than the techniques
used to prove them. The majority of proofs appear in the appendix, although shorter,
more instructive proofs appear in the main body.

The remainder of this chapter contains an introductory treatment of the potential
outcomes framework. This will be useful to the uninitiated, but may be skipped by
experts. The remaining three chapters are largely independent and self contained:
each chapter begins with an introduction of relevant preliminary material and ends
with a concluding discussion of open problems.
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1.2 Preliminaries

1.2.1 Potential outcomes framework

In this dissertation, I focus on the potential outcomes framework for causal inference,
first formulated by Neyman (1923) and later independently discovered and pioneered
by Rubin (1974). For a more complete treatment of randomized experiments under
the potential outcome framework, we refer readers to Imbens and Rubin (2015).

Before formally defining the framework, I would like to take some time to discuss
the types of causal questions which experimenters seek to investigate when invoking
this framework. Holland (1986) describes two types of causal reasoning: discovering
the cause of a given effect and determining the effect of a given cause. Generally
speaking, the former is much more challenging and should seem to require far more
assumptions. Let me further describe both of these types of causal reasoning by way
of example: imagine a team of doctors is responsible for and closely monitors the
health of several hundred cancer patients. Upon seeing a significant improvement in
the rates of cancer remission among the patients—measured by the circulating tumor
cell (CTC) count—the team of doctors might ask the causal question: “what caused
the CTC count to decrease?” This is a very challenging question because it requires,
among other things, the doctors’ knowledge of every possible variable involved in
the presumed underlying causal mechanism of the patient’s cancer. On the other
hand, the doctors may ask a more targeted causal question: “what is the effect of a
six month experimental drug course on the CTC count?” This is a more tractable
question because here the cause is fixed and the effect is to be determined. One
approach to answering this question is to design a study which explicitly controls
this cause by assigning (typically at random) which patients receive the experimental
drug. The potential outcomes framework addresses these styles of targeted causal
questions, which are the focus of this dissertation.

The potential outcome framework is now formally defined: there are n experimen-
tal units which are index by integers i ∈ {1, 2, . . . n} = [n]. In our example above,
the experimental units are the cancer patients. Each unit receives a binary treatment
zi ∈ {±1} and we collect the n treatments into a treatment vector,

z = (z1, z2, . . . zn) .

The treatment zi assigned to unit i ∈ [n] is random, and so the treatment vector z
is a random vector. Let Z+ = {i ∈ [n] : zi = 1} and Z− = {i ∈ [n] : zj = −1}
be the random partition of the units into the treated and control groups. The two
treatments in our example are a six month course of the experimental drug (zi = 1)
and a six month course of a placebo (zi = −1). It is important to note that, the
experiment is only run once, meaning that only one treatment vector z ∈ {±1}n is
selected. The distribution over treatment vectors is specified by the experimenter and
is referred to as the experimental design, or simply the design.
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Every unit has two potential outcomes which are associated with the two treat-
ments. If unit i ∈ [n] is assigned treatment zi = 1, then the experimenter observes
potential outcome ai ∈ R; otherwise, the unit is assigned zi = −1 and the potential
outcome bi ∈ R is observed. The two outcomes are referred to as “potential” because
either could be potentially observed, but only one is actually observed after treatment
is assigned. In our example, the two outcomes for each unit are the CTC counts of
the patients under the drug and the placebo treatments. For each unit i ∈ [n], the
observed outcome is a random variable which depends on the treatment,

yi =

{
ai if zi = 1

bi if zi = −1
.

We find it useful to collect the the two (deterministic) potential outcomes and the
(random) observed outcome into vectors:

a = (a1, a2, . . . an) and b = (b1, b2, . . . bn) and y = (y1, y2, . . . yn) .

We also assume that for each unit i ∈ [n], the experimenter has collected a d-
dimensional covariate vector xi ∈ Rd. The covariate vectors are known before treat-
ment and so they may be used in the construction of both the design and the esti-
mator. In our example, the covariates may include age, gender, and weight of the
participants in addition to results of pre-treatment diagnostic tests.

We emphasize here that the units, their outcomes, and their covariates are fixed,
deterministic quantities. All randomness is induced by the random assignment of
treatment by the experimenter. Additionally, the potential outcomes framework, as
we have described it here, has implicity invoked the Stable Unit Treatment Value
Assumption (SUTVA) which dictates that the potential outcomes are well-defined
(i.e. there is no hidden or unobserved treatment) and also that the outcome of a
unit is determined solely by its own treatment assignment (Rubin, 1980; Holland,
1986). Experiments which violate this second part of the SUTVA are said to exhibit
interference. The design and analysis of experiments under interference are considered
in Chapters 3 and 4.

We now define several causal quantities of interest in the potential outcome frame-
work. The first such quantity is the individual treatment effect (ITE), which is defined
as the contrast between a unit’s treatment and control outcomes,

τi = ai − bi for all i ∈ [n] .

A unit’s individual treatment effect is never directly observed because only one of
these potential outcomes is observed. Moreover, we cannot hope to estimate each
unit’s ITE within reasonable precision. In our example, a patient’s ITE is the differ-
ence in the CTC counts under the drug course and the placebo course. An aggregate
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causal quantity is the average treatment effect (ATE), which is defined as

τ =
1

n

n∑
i=1

τi =
1

n

n∑
i=1

(ai − bi) .

The ATE cannot be observed directly because only half of the outcomes are observed;
however, by constructing an appropriate experimental design, the experimenter can
hope to estimate this quantity to a reasonable precision. In the cancer trial example,
the ATE is the effect of the experimental drug course on CTC counts, averaged over
all patients in the study.

The overall goal is to construct a design and an estimator so that the ATE is
estimated to reasonably high precision. There are a myriad of designs and estimators
which experimenters use for this task. For concreteness, we discuss a few of the most
common choices.

Designs There are a number of designs which experimenters use in practice, but the
two most common designs are the Bernoulli design and the group-balanced design.

• Bernoulli Design: In the Bernoulli design, units are assigned treatments uni-
formly and independently. In this way, the probability of each assignment vector
z ∈ {±1}n under the Bernoulli design is 1/2n.

• Group-Balanced Design: In the group-balanced design, a uniformly random
half of the units are selected to receive treatment. Thus, the treatment group
Z+ follows the distribution Z+ ∼ Unif{Z ⊂ {±1}n : |Z| = n/2}. It is typically
assumed that when using a group-balanced design, n is even.

Estimators A wide variety of estimators are used in practice. Two of the most
common estimators are the Horvitz–Thompson and difference-in-means estimators.

• Horvitz–Thompson: The Horvitz–Thompson estimator is a difference be-
tween the observed outcomes in the treatment and control groups, weighted by
the inverse of the probability of observing that treatment. More formally,

τ̂ =
1

n

[∑
i∈Z+

ai
Pr(zi = 1)

−
∑
i∈Z−

bi
Pr(zi = −1)

]
.

As we will show later in this section, the re-weighting terms ensure unbiasedness
under weak conditions on the design.

• Difference-in-Means: The difference-in-means estimator is the difference be-
tween the averages of the outcomes in the two treatment groups, More formally,

τ̂ =
1

|Z+|
∑
i∈Z+

ai −
1

|Z−|
∑
i∈Z−

bi .
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We remark that under the group-balanced design, the difference-in-means esti-
mator is equivalent to the Horvitz–Thompson estimator. In the next section, we
demonstrate typical analyses of an estimator-design pair.

1.2.2 Existing methods of analysis

In this section, we briefly review several central concepts in the statistical analysis
of randomized experiments, such as unbiasedness and consistency of estimator-design
pairs. These concepts are the bread and butter of the statistician, but may be less
familiar to the computer scientist.

Finite Sample Analysis An analysis is said to hold in finite samples if it is true for
any number of units n. The first finite sample concept we introduce is unbiasedness,
which ensures that an estimator for the average treatment effect is correct on average.

Definition 1.1. An estimator-design pair is said to be unbiased for the average
treatment effect if E[τ̂ ] = τ , where the expectation is with respect to the random
assignment specified by the design.

To illustrate the concept of unbiasedness, we show that the Horvitz–Thompson
estimator is unbiased for any design satisfying a mild positivity assumption.

Proposition 1.2. Suppose that a design satisfies Pr(zi = 1) ∈ (0, 1) for all units
i ∈ [n]. Then, the Horvitz–Thompson estimator is an unbiased estimator of the
average treatment effect.

Proof. For each unit i ∈ [n], define the function πi(v) = Pr(zi = v) for v ∈ {±1}.
Observe that the Horvitz–Thompson estimator may be written as

τ̂ =
1

n

n∑
i=1

ziyi
πi(zi)

.

Under the positivity condition, the expectation of the inner term is

E
[ ziyi
πi(zi)

]
= Pr(zi = 1) · 1 · ai

πi(1)
+ Pr(zi = −1) · (−1) · bi

πi(−1)
= ai − bi = τi .

The result follows by linearity of expectation and definition of the ATE.

Unbiasedness is a useful property of an estimator which ensures that there is no
systematic bias in our experiment; however, the property itself is weak as it does not
speak to the precision of the estimator. The mean squared error, defined below, is a
measure of the precision of the estimator.

Definition 1.3. The mean squared error of an estimator-design pair is E[(τ̂ − τ)2],
where the expectation is with respect to the random assignment specified by the
design.
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One method of analysis is to provide conditions on the potential outcomes under
which the mean squared error of an estimator-design pair is small. Such an analysis
should inform the experimenter about how to design their experiments. For example,
the mean squared error of the Horvitz–Thompson estimator under an arbitrary design
is derived in Section 2.1.2 as Lemma 2.2. Bounds on the tails of the distribution of
an estimator’s error under a design are sometimes derived in the literature to provide
further insight into the precision of an experiment.

It is a commonly held (though rarely explicitly stated) belief in the literature that
the precision of an estimator-design pair will depend on the potential outcomes in
ways that are so involved that succinctly characterizing precision in finite samples is
futile. For this reason, statisticians prefer large sample or asymptotic analyses.

Large Sample Analysis An analysis is said to hold in large samples if it is a
statement about the limiting behavior of an experiment as the number of units grows
large. More precisely, these are statements about a sequence of experiments, where
the sample size grows to infinity.

Formally speaking, the asymptotic sequence is indexed by N ∈ N. For every N ,
the number of units in the N experiment in the sequence is n = N , and the outcomes
and covariates are doubly indexed a(N)

i , b(N)
i , and x(N)

i , where i ∈ [n] is the unit. The
causal estimand is denoted τN and the estimator under the design is denoted τ̂N . The
experiments in the sequence are not related to each other in any way, but conditions
on the sequence are imposed to establish asymptotic properties.

Definition 1.4. An estimator-design pair is consistent in mean square for a fixed
asymptotic sequence if limN→∞ E[(τN− τ̂N)2] = 0. Similarly, an estimator-design pair
is N q-consistent in mean square if the normalized mean squared error is asymptoti-
cally bounded, i.e. limN→∞N

q ·
√
E[(τN − τ̂N)2] = O(1) for some q > 0.

Consistency guarantees that with enough units in the experiment, the estimator-
design pair is able to exactly recover the average treatment effect. The parameter q in
the Definition 1.4 captures the rate of convergence of the mean squared error to zero.
As an example, the next proposition shows that the Horvitz–Thompson estimator is
consistent under the Bernoulli design.

Proposition 1.5. Suppose that the sequence of potential outcomes satisfies the fol-
lowing condition: there exists a constant C ≥ 0 such that

1

n

n∑
i=1

(a
(N)
i + b

(N)
i )2 ≤ C for all N ∈ N.

Then, the Horvitz–Thompson estimator under the Bernoulli design is N1/2-consistent
in mean square.

Proof. We drop the double indexing on the index N of the experiment and consider
a fixed number of units n. By Proposition 1.2, the Horvitz–Thompson estimator is
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unbiased and so the mean squared error is equal to its variance. Using the form in of
the Horvitz–Thompson estimator in the proof of Proposition 1.2, we decompose the
variance of the estimator as

E[(τ − τ̂)2] = Var(τ̂) = Var
( 1

n

n∑
i=1

2ziyi

)
=

1

n2

n∑
i=1

n∑
j=1

Cov(2ziyi, 2zjyj) .

Under the Bernoulli design, the assignments zi and zj are independent for i 6= j.
Because the observed outcomes yi and yj are functions of the assignments zi and zj,
these outcomes are also independent. Thus, the crossing terms in the sum above are
zero, yielding that

E[(τ − τ̂)2] =
1

n2

n∑
i=1

Var(2ziyi) =
1

n2

n∑
i=1

(ai − bi)2 ,

where the last equality follows from a computation of these variance terms under the
Bernoulli design, i.e.

Var(2ziyi) = (1/2) · (2ai − (ai − bi))2 + (1/2) · (−2bi − (ai − bi))2 = (ai + bi)
2 .

Under the assumption of the proposition that the average magnitudes of the outcomes
are bounded, we have the bound on the mean squared error:

E[(τ − τ̂)2] =
1

n

(
1

n

n∑
i=1

(ai + bi)
2

)
≤ C/n .

Thus, we have that the sequence N1/2
√

E[(τ − τ̂)2] is asymptotically bounded, as it
is upper bounded by the above:

lim
N→∞

N1/2 ·
√
E[(τ − τ̂)2] ≤ lim

N→∞
N1/2 ·

√
C/N = C .

Other asymptotic analyses include characterizing the limiting distribution of an
estimator-design pair (e.g. asymptotic normality), which typically require more as-
sumptions on the sequence of potential outcomes than what is required for consistency.
For notational convenience, it is common to drop the index N in asymptotic analyses.

An informative way of obtaining asymptotic analyses is to first produce a finite
sample bound and then deriving asymptotic conditions under which the finite sample
bound yields the desired asymptotic property. Oftentimes, asymptotic analyses can
illustrate the key conditions which are required for an estimator to be precise under a
design without getting into the details required by a finite sample analysis. Asymp-
totic analyses of estimator-design pairs are preferred by statisticians in the same way
that asymptotic analyses of run time are preferred by computer scientists.

However, asymptotic analyses can often smooth over challenges and difficulties
that arise in finite samples. Focusing on the asymptotics can sometimes blind the
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methodologist to these nuances—after all, every experiment in the real world includes
only finitely many experimental units. Thus, we make an effort throughout this
dissertation to carry out finite sample analyses where possible and resort to using
asymptotic analyses only for illustrative purposes.

1.2.3 Further remarks on the framework

Before continuing, I would like to highlight and clarify several aspects of the potential
outcome framework. My goal in doing so is to better contextualize the framework
and its assumptions in the broader fields of causal inference and statistics.

• Finite Population versus Super-population: In our description of the
framework, there are n units with fixed potential outcomes and covariates. This
is referred to as the finite population setting. In the super-population setting,
n units are sampled i.i.d. from a distribution P over outcome and covariate
triples (ai, bi,xi). This places some structural assumptions on the relationship
between units, outcomes, and covariates of units in the experiment. The causal
estimand is now defined with respect to the distribution (e.g. τ = EP [ai − bi])
and the randomness in the experiment comes from the experimental design in
addition to the underlying distribution on units. The finite population set-
ting is more conservative and sometimes preferred by empirical researchers, as
the super-population assumption cannot be verified and may impose a level of
homogeneity among units which rarely can be justified.

• Internal versus External Validity: The average treatment effect is defined
only with respect to the units in the experiment. The ability to estimate the
treatment effect to high precision is known as internal validity. Even if the
experimenter succeeds in the goal of internal validity, this does not address
the question of the effect of the treatment on units which were not included
in the experiment. Understanding the effect of the treatment on units outside
the experiment is known as external validity, which is considered by many re-
searchers to be a harder problem. The difference between internal and external
validity remains even when a super-population model is assumed (e.g. distribu-
tion shifts). Solving the external validity problem is an active area of research
(Stuart et al., 2011; Tipton, 2013; Lesko et al., 2017).

• Other Statistical Problems: In this dissertation, our primary focus is on
point estimation of the average treatment effect. We will also discuss methods
for constructing confidence intervals which contain the average treatment effect
with a desired probability. There are other statistical problems that one could
consider, including various forms of hypothesis testing. Methodological contri-
butions in this work will prove useful for many of these statistical problems,
but we focus our attention on point estimation and construction of confidence
intervals.
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1.2.4 Notation

We denote vectors using lowercase bold text (e.g. x and y) and we denote matrices
using uppercase bold text (e.g. A and B). Coordinates of vectors are denoted using
parenthesis so that x(i) denotes the ith component of vector x. The coordinates of a
matrix are denoted either using the parenthesis notation or a lower-case notation so
thatA(i, j) or ai,j may be used to denote the entry in the ith row and jth column ofA.
For notational convenience, we do not make distinctions between random variables
and the values that they take, which we hope to be clear from context. Given a
random vector x, we denote its expectation by E[x] and its covariance matrix by
Cov(x).

The transpose of a vector or matrix is denoted xᵀ and Aᵀ, respectively. The
Euclidean inner product between vectors is denoted as either xᵀy or 〈x,y〉. The
`2 norm of a vector v is written as ‖v‖, and the corresponding operator norm of a
matrix A is denoted ‖A‖ = max‖x‖=1‖Ax‖. Other norms are introduced throughout
the dissertation as they are used.

The trace of a square matrix, denoted tr(A), is the sum of its diagonal entries.
We denote the trace inner product on matrices by 〈A,B〉 = tr(AB

ᵀ
). A symmetric

matrix A is positive semidefinite if vᵀAv ≥ 0 for all vectors v and positive definite
if this inequality is strict for all vectors. The Loewener ordering is a partial ordering
on symmetric matrices defined as A � B if B −A is positive semidefinite.
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Chapter 2

Gram–Schmidt Walk Design 1

2.1 Introduction

Randomized experiments are the gold standard for establishing causal effects and are
used in a wide variety of scientific fields. Under the potential outcome framework,
randomization of treatment assignments is the cornerstone of estimation and infer-
ence in experiments. Exactly how to randomize, however, has been the subject of a
historical debate which continues to the present day.

Before presenting formal arguments in this debate, consider the following scenario:
a researcher aims to estimate the effect of a newly developed drug on a person’s
heart rate. After recruiting around 100 participants for her study, the researcher
sets out to design the randomization scheme used for assigning treatment (either
drug or placebo) to the participants. As she investigates randomization schemes, the
researcher notices that when treatment is independently assigned to every participant,
the two treatment groups tend to look dissimilar in some way: more men are assigned
to treatment, the older participants receive control, etc. After careful consideration,
the researcher is able to partition the participants into two deterministic groups which
are similar in all the ways she can measure. She considers assigning treatment to one
of the groups randomly, but worries that there’s not enough randomization in this
treatment assignment mechanism. The researcher thinks to herself: should I assign
treatment fully at random, or make the treatment groups look similar?

As stylized as this problem may seem, it is faced by researchers across a variety of
disciplines in the design and analysis of their experiments. In Section 2.1.1, we review
the debate around randomization and covariate balance in randomized experiments,
which dates back to at least 1923 and continues to the present day. In this dissertation
chapter, we contribute to this historical debate in two ways.

• Our first contribution is a new perspective on the role of covariate balancing in
randomized experiments, which we refer to as the balance-robustness trade-off.

1Based on the working paper: Christopher Harshaw, Fredrik Sävje, Dan Spielman, and Peng
Zhang (2021) “Balancing covariates in randomized experiments with the Gram–Schmidt Walk de-
sign”. arXiv:1911.03071.
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As we discuss in more detail later in the Chapter, we say that a design is robust
if the estimator is sufficiently precise for all possible values of the unknown
potential outcomes, which is a worst-case analysis. We highlight and formalize
the following fundamental tension: in finite samples, an experiment cannot
balance covariates and provide maximal robustness. Understanding the effect
of this trade-off on the results of an experiment is a statistical question, while
constructing an experimental design which achieves a desired trade-off between
covariate balance and robustness is an inherently computational question.

• Our second contribution is the development of the Gram–Schmidt Walk Design
(GSW-Design), which allows experimenters to navigate the balance-robustness
trade-off in a near-optimal way. We obtain several tight characterizations of the
behavior of the Horvitz–Thompson estimator under the GSW-Design—including
bounds on the mean squared error and tails of the estimator—which hold in
finite samples and without any structural assumptions on the units, outcomes,
or covariates. Our finite-sample analysis gives a clearer understanding about
the way in which covariate balancing may improve precision of the Horvitz–
Thompson estimator.

Central to the design and its analysis is the field of algorithmic discrepancy theory,
which seeks to answer the following questions: how well can a group of objects be
partitioned into two similar groups? Are there efficient algorithms for constructing
such partitions? The objects considered by discrepancy theory range from geometric
(e.g. points in a square or discs in the plane) to combinatorial (e.g. set systems) and
even linear algebraic (e.g. vectors and linear operators) in nature (Beck and Fiala,
1981; Spencer, 1985; Banaszczyk, 1998; Marcus et al., 2015). For each setting, a
measure of discrepancy is proposed and algorithms for constructing a partition with
small discrepancy are considered. Indeed, our design is based on the Gram–Schmidt
Walk algorithm of Bansal et al. (2019), which provided the first efficient algorithm for
balancing high dimensional vectors in a way that constructively proves Banaszczyk’s
theorem.

One contribution of this chapter is the proposal of a new distributional discrepancy
problem (Section 2.2.3, Problem 2.5) which, unlike previous discrepancy problems
that focus only a single partition, is defined for a distribution over partitions. This
distributional discrepancy problem is more well-suited to the design of randomized
experiments. To the best of our knowledge, this is the first formal connection between
the two disparate fields: the design of randomized experiments and algorithmic dis-
crepancy theory.

A deep understanding of discrepancy theory is not required to understand the
results presented in this chapter. Unfortunately, it is well beyond the scope of this
chapter to provide a complete overview of discrepancy theory. In order to get a
sense of the mathematical foundation underpinning this work, we point the reader to
the references above, the textbooks (Chazelle, 2000; Matoušek, 1999) and the book
chapter of Bansal (2014).
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2.1.1 Related work

We begin by reviewing the the historical debate on the use of randomization and
covariate balancing in experimental design. In favor of randomization, Fisher (1925,
1926) points out that randomizing ensures unbiased estimates of the treatment effect,
but his arguments also extend to precision of an estimator. Wu (1981) appears to
be the first paper to explicitly discuss the connection between randomization and
robustness in this extended sense. He shows that the fully randomized design min-
imizes the worst-case mean squared error. The result has been extended in various
directions (e.g., Li, 1983; Kallus, 2018; Bai, 2019b; Basse et al., 2019).

In a review of the experimental methods of the day, Student (1923) did not mention
randomization even as a possibility. In a later paper, Student (1938) explicitly argues
that randomization often is harmful because random assignments can only make the
treatment groups less comparable than what they would be under the most balanced
assignment. His conclusion is that the only role for randomization is to select between
assignments that are equally balanced. The same conclusion, in slightly different
incarnations, has been reached several times after this (see, e.g., Bertsimas et al.,
2015; Kasy, 2016; Deaton and Cartwright, 2018; Kallus, 2018).

Fisher highlights that we do not need to choose between the two extremes. We
can partially restrict the randomization to avoid the most troublesome imbalances,
but allow some imbalances to persist in order to accommodate well-motivated con-
fidence intervals and hypothesis tests. The insight has inspired a large number of
experimental designs which fall on the continuum between the fully randomized and
the maximally balanced designs. Examples include the matched pair design (Greevy
et al., 2004; Imai et al., 2009; Bruhn and McKenzie, 2009), various stratified designs
(Fisher, 1935; Higgins et al., 2016) and re-randomization (Lock Morgan and Rubin,
2012; Li et al., 2018).

We now discuss two types of covariate-balancing experimental designs which are
most relevant to the results presented in this chapter: re-randomization and matched
pair design.

A re-randomization design is a uniform distribution over the set of assignments
which satisfy a user-defined balance criterion. Experimenters use rejection sampling
to sample from a re-randomization design; that is, assignment vectors are indepen-
dently and uniformly sampled until one meets the balance criterion. Lock Morgan
and Rubin (2012) provide an analysis of this approach when the balance criterion is
based on Mahalanobis distances: an assignment z ∈ {±1}n is accepted if

∥∥∥∑
i∈Z+

vi −
∑
i∈Z−

vi

∥∥∥ ≤ α where for each unit i ∈ [n], vi =
( n∑
j=1

xjx
ᵀ
j

)−1/2

xi

is a whitened-covariate vector and α > 0 is a user-defined threshold. They inves-
tigate the improvement in precision achieved by the approach under an assumption
of additive treatment effects and an assumption of normally distributed covariates
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and potential outcomes. Under these assumptions, they show that rerandomization
monotonically improves precision in the estimator as the balance criterion becomes
stricter. However, the assumptions they impose implicitly remove the trade-off be-
tween robustness and balance mentioned above, and it may therefore be difficult for
experimenters to judge the relevance of the results for practice. Rerandomization also
suffers from computational difficulties: to decrease the balance parameter α by a con-
stant factor one must reject a number of samples that is exponential in the number
of covariates.

Li et al. (2018) relax the assumptions imposed by Lock Morgan and Rubin (2012)
at the cost of studying the estimator’s asymptotic distribution. The authors show
that the estimator has a non-normal asymptotic distribution under rerandomization
in this more general setting, emphasizing the concerns with the assumptions in the
analysis by Lock Morgan and Rubin (2012). While Li et al. improve understand-
ing of the rerandomization design, their analysis considers a balance criterion that is
asymptotically fixed, meaning that an acceptable assignment must attain an aggre-
gated Mahalanobis distance below some fixed threshold no matter the sample size.
In practice, experimenters are typically limited to those acceptance criterion which
their computational resources allow, which typically varies by sample size and dimen-
sionality of the covariates. It may therefore be difficult for experimenters to use the
asymptotic results in practice.

Another related design is the matched pair design, which consists of two parts.
First, the units are grouped into pairs based upon the similarity of their covariates.
Next, independently for each pair, one unit is randomly selected to receive treat-
ment and the other unit receives control. The matched pair design itself is agnostic
to the way in which units are matched, although Greevy et al. (2004) advocate for
using a min-cost matching formulation where the cost of a matched pair is the Eu-
clidean distance between (possibly whitened) covariate vectors. One downside of the
matching-based approach is that high dimensional covariates can be nearly equidis-
tant and so most matchings based on pair-wise distances may be indistinguishable.

Recently, Bai (2019a) analyzed the matched pair design under a super-population
framework, where the outcomes and covariates of each unit are drawn i.i.d. from an
unknown distribution. Bai (2019a) shows that among all stratified designs, a matched
pair design minimizes the mean squared error. This optimality analysis has two main
drawbacks. First, the matched pair design is shown to minimize mean squared error
only among stratified designs; however, this optimality will not hold among general
designs. Second, the optimal matching depends on the unknown outcomes, which are
not available to the experimenter. Bai (2019a) provides methods for estimating the
optimal matching when results from a pilot study are available. It is possible that
similar pilot study considerations may be used to inform the choice of parameter for
the GSW-Design presented here.

Compared to analyses of these previous designs, the analysis in this chapter does
not require assumptions on the potential outcomes or the covariates. In particular,
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the analysis does not require the covariates or potential outcomes to be normally dis-
tributed, nor the units to be drawn from a superpopulation, nor the treatment effects
to be additive. Moreover, the analysis does not require whitening transformations on
the covariates, so it applies no matter what type of covariates experimenters want to
balance. Still, the analysis of both precision and tail behavior is valid in finite samples,
and does not rely on large sample approximations. We use asymptotic illustrations
only for expositional purposes to highlight and simplify features of the finite sample
results. Hence, the understanding of the behavior of the Gram–Schmidt Walk design
is both more precise and more relevant to practice than the understanding of existing
experimental designs. Additionally, whereas some existing designs require excessive
computational resources, sampling assignments from the Gram–Schmidt Walk design
is practical due to its computationally efficiency.

2.1.2 Preliminaries

We work under the Neyman-Rubin model of potential outcomes, which we briefly
summarize here. There are n units in the experiment, indexed by [n] = {1, 2, . . . n}.
The experimenter randomly assigns treatment zi ∈ {±1} to each unit i ∈ [n] and we
collect these assignments into the random vector z = (z1, z2, . . . zn). We denote

Z+ = {i ∈ [n] : zi = 1} and Z− = {i ∈ [n] : zi = −1}

to be the random partition of the units into treatment and control groups, respectively.
The design of the experiment is the distribution over the assignment vectors {±1}n.

Each unit i ∈ [n] has two potential outcomes, ai which is observed if zi = 1 and
bi which is observed if zi = −1. The term potential is used here because while both
outcomes have the potential to be observed, only one of them is. For each unit i ∈ [n],
the observed outcome is the random variable defined by

yi =

{
ai if zi = 1

bi if zi = −1

It will be convenient to collect the outcome variables into vectors

a = (a1, a2, . . . an) b = (b1, b2, . . . bn) y = (y1, y2, . . . yn) .

Each unit i ∈ [n] has a vector of d covariates, xi ∈ Rd which is known to the exper-
imenter prior to treatment assignment. In this way, the design may depend on the
pre-treatment covariates. We emphasize that units, their outcomes, and their covari-
ates are deterministic and we make no assumptions on them; the only randomness is
the experiment comes from the experimenter’s assignment of treatment.
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The causal quantity of interest is the average treatment effect

τ =
1

n

n∑
i=1

(ai − bi) ,

which is the contrast between outcomes under treatment and control, averaged over
units in the experiment. The average treatment effect cannot be directly observed
and so we must estimate it. In this chapter, we restrict our attention to the Horvitz–
Thompson estimator

τ̂ =
1

n

[∑
i∈Z+

ai
Pr(zi = 1)

−
∑
i∈Z−

bi
Pr(zi = −1)

]
.

Proposition 1.2 in Section 1.2 demonstrates that the Horvitz–Thompson estimator is
unbiased under designs which satisfy the positivity condition that Pr(zi = 1) ∈ (0, 1)

for all units i ∈ [n].
When comparing designs, we focus on the precision of the Horvitz–Thompson

estimator. To make the task concrete, we investigate the mean squared error E[(τ −
τ̂)2]. For expositional purposes, we restrict our attention throughout the chapter to
designs where each unit is equally likely to receive either treatment, i.e. Pr(zi = 1) =

Pr(zi = −1) = 1/2. Extensions of our results to settings where Pr(zi = 1) ∈ (0, 1)

are discussed in Appendix A.1.6.
The following lemma derives the error of the Horvitz–Thompson estimator condi-

tioned on a particular assignment.

Lemma 2.1. For any experimental design satisfying Pr(zi = 1) = 1/2 for all units
i ∈ [n], the error of the Horvitz–Thompson estimator can be written as

τ̂ − τ =
1

n
〈z,µ〉 where µ = a+ b.

Proof. Recall that the average treatment effect and Horvitz–Thompson estimator can
be written as

τ =
1

n
〈1,a− b〉 and τ̂ =

2

n
〈z,y〉.

By expressing the observed outcome as yi = ai(
1+zi

2
) + bi(

1−zi
2

), we see that

nτ̂ = 2〈z,y〉 = 〈z,a+ b〉+ 〈1,a− b〉 = 〈z,µ〉+ nτ.

The desired result is obtained by rearranging terms.

Lemma 2.1 demonstrates that the mean squared error depends on the potential
outcomes through their sum. For this reason, we refer to µ as the sum potential
outcome vector, or simply the potential outcome vector in this chapter. We now
derive the mean squared error of the Horvitz–Thompson estimator under an arbitrary
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design.

Lemma 2.2. For any experimental design with Pr(zi = 1) = 1/2 for all i ∈ [n], the
mean squared error of the Horvitz–Thompson estimator is

E[(τ̂ − τ)2] =
1

n2
µ

ᵀ
Cov(z)µ .

Proof. Lemma 2.1 gives τ̂ − τ = 〈z,µ〉/n. The expectation of the square of this
expression is

E
[
(τ̂ − τ)2

]
=

1

n2
E
[
〈z,µ〉2

]
=

1

n2
µ

ᵀ E
[
zz

ᵀ]
µ,

because µ is not random. The proof is completed by noting that E[zzᵀ] = Cov(z)

because E[z] = 0 when Pr(zi = 1) = 1/2 for all i ∈ [n].

Lemma 2.2 demonstrates that the mean squared error of the Horvitz–Thompson
estimator under a given design is the quadratic form in Cov(z) evaluated at the
(unknown) potential outcome vector µ. In this way, the properties of the design
which affect the mean squared error are completely captured by the covariance matrix
of assignments, Cov(z). This is a central insight in our work which informs both our
interpretation of the experimental design problem as well as the proposed design.

2.2 A New Perspective on Covariate Balancing

In this section, we present new notions of robustness and covariate balance in ran-
domized experiments. Our notion of covariate balance is motivated by a presumed
linear relation between outcomes and covariates. We show that there is a fundamental
trade-off between covariate balance and robustness.

2.2.1 A measure of robustness

When designing an experiment, the experimenter is often primarily concerned with
the robustness of the experiment. Informally speaking, we say that a design is robust
if the estimator is sufficiently precise for all possible values of the unknown potential
outcomes. This can be formalized by examining the maximum mean squared error
over a particular set of potential outcomes. In this way, the design is robust if this
worst-case error is not too large. An experimenter may value a design which is robust,
as the potential outcomes are unknown before experimentation.

Our first result is to show that the operator norm of the covariance matrix of
treatment assignments Cov(z) characterizes the worst-case behavior of the design
over all potential outcomes of bounded average magnitude. Here, the set of potential
outcomes with bounded average magnitude is defined as

PO(M) =
{
a, b ∈ Rn :

1

n

n∑
i=1

(ai + bi)
2 ≤M

}
,
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where M is the bound on the average magnitude.

Lemma 2.3. Consider a design satisfying Pr(zi = 1) = 1/2 for all units i ∈ [n]. The
worst-case mean squared error over the set of all potential outcomes with bounded
magnitude is

max
a,b∈PO(M)

E[(τ − τ̂)2] =
M

n
· ‖Cov(z)‖.

Lemma 2.3 motivates taking the operator norm2 ‖Cov(z)‖ to be a measure of
robustness in a randomized experiment, as it determines the worst-case error of the
Horvitz–Thompson estimator. The operator norm ‖Cov(z)‖ measures the amount of
pair-wise dependence between the assignments. Thus, Lemma 2.3 demonstrates that
designs with greater amounts of dependence between assignments are less robust.

Our next result is to show that the Bernoulli design is min-max optimal over the
set of potential outcomes with bounded average magnitude. The result follows by
observing that the Bernoulli design minimizes the operator norm ‖Cov(z)‖ over all
designs satisfying Pr(zi = 1) = 1/2 .

Proposition 2.4. Every experimental design with Pr(zi = 1) = 1/2 for all units
i ∈ [n] satisfies the inequality ‖Cov(z)‖ ≥ 1 and equality holds for the Bernoulli
design. Thus, the Bernoulli design is min-max optimal for potential outcomes with
bounded average magnitude, PO(M).

Proposition 2.4 suggests that the experimenter who seeks maximal amounts of ro-
bustness should employ the Bernoulli design, where treatment assignments are max-
imally independent. Another implication of these results is that the operator norm
‖Cov(z)‖ measures the multiplicative increase in the mean squared error from that
of the min-max design.

2.2.2 A measure of covariate balance

Oftentimes, the experimenter has prior substantive knowledge about the units and
their outcomes. In particular, the pre-treatment covariates might inform the experi-
menter about which units will have similar outcomes. In this case, the experimenter
may wish to forgo some amount of robustness in order to increase precision for cer-
tain outcomes. When covariates are somewhat informative of the outcomes, a design
which ensures covariate balance between the treatment groups may help to increase
precision.

We formalize this covariate balancing intuition by considering the best linear as-
sociation between outcomes and covariates. Recall that each unit i ∈ [n] has an
associated d-dimensional vector of covariates xi ∈ Rd. We collect the covariate vec-
tors x1,x2, . . .xn as rows of the n-by-d matrix X. Let βls be a best linear fit of the

2Recall from Section 1.2.4 that the operator norm is defined as ‖Cov(z)‖ = max‖w‖=1‖Cov(z)w‖.
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outcomes to the covariates:

βls ∈ arg min
β∈Rd

∥∥µ−Xβ∥∥ .

We emphasize that βls is not known to the experimenter and has no causal inter-
pretation—it is simply the projection of the outcome vector onto the span of the
covariates. We may decompose the outcome vector into two orthogonal parts,

µ = Xβls + (µ−Xβls) , µ̂+ ε ,

where µ̂ is the best linear fit of the outcomes to the covariates and ε is the residual
error of this fit. Using Lemma 2.2, we may write the mean squared error of a design
in terms of this decomposition as

E[(τ − τ̂)2] = µ
ᵀ

Cov(z)µ

= (µ̂+ ε)
ᵀ

Cov(z)(µ̂+ ε)

= µ̂
ᵀ

Cov(z)µ̂+ 2µ̂Cov(z)ε+ ε
ᵀ

Cov(z)ε

= β
ᵀ
ls Cov(X

ᵀ
z)βls + 2βlsX

ᵀ
Cov(z)ε+ ε

ᵀ
Cov(z)ε

Ignoring the crossing term for the moment, we have that the mean squared error of
a design is roughly

E[(τ − τ̂)2] ≈ βᵀ
ls Cov(X

ᵀ
z)βls + ε

ᵀ
Cov(z)ε .

Suppose that the covariates are highly linearly predictive of the potential outcomes
so that µ̂ has a considerably larger norm than the residual ε. In this case, we can
make the mean squared error small by aiming to make the βᵀ

ls Cov(X
ᵀ
z)βls term

small. The best-fit linear function βls is not known, so one way to ensure that this
term is small is to use the operator-norm bound:

β
ᵀ
ls Cov(X

ᵀ
z)βls ≤ ‖Cov(Xz)‖ · ‖βls‖2

and construct the design so that the operator norm ‖Cov(Xz)‖ is small. This ensures
that the mean squared error is small for all potential outcome vectors which are well-
approximated by a linear function of the covariates, regardless of which linear function
it is. For this reason, we consider ‖Cov(X

ᵀ
z)‖ to be an informative notion of covariate

balance for the design.
An experimenter may now wish to construct a design which is robust and achieves

a high level of covariate balance. The fundamental trade-off is that a design cannot
maximally balance covariates and attain maximal robustness: both operator norms
‖Cov(z)‖ and ‖Cov(X

ᵀ
z)‖ cannot be simultaneously minimized. A maximally ro-

bust design requires nearly uncorrelated treatment assignments while a maximally
covariate-balancing design requires a large amount of correlation between treatment
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assignments. Generally speaking, a design which achieves increased covariate balance
will be less robust and an extremely robust design affords little room for balancing
covariates. We refer to this fundamental tension as the balance robustness trade-off.

How to navigate the balance-robustness trade-off depends on the preferences of
the experimenter. Some experimenters may prefer increased covariate balance at the
cost of some robustness, while other experimenters may value robustness over any
level of covariate balance. The goal in the remainder of the chapter is to provide
algorithmic insights and techniques into how this balance-robustness trade-off may
be navigated.

2.2.3 A distributional discrepancy problem

In this section, we introduce a new algorithmic discrepancy problem, which captures
the balance-robustness trade-off and arises naturally in the context of experimental
design. Unlike most previously considered discrepancy problems which seek to con-
struct a single assignment vector, this is a distributional discrepancy problem, which
seeks to construct a distribution over assignment vectors.

Problem 2.5. Consider input vectors x1,x2, . . .xn ∈ Rd arranged as rows in the
n-by-d matrix X. What is the smallest value C > 0 such that there exists an efficient
randomized algorithm which takes as input X and φ ∈ [0, 1] and produces an assign-
ment z ∈ {±1}n with the following distributional properties: Pr(zi = 1) = 1/2 for all
i ∈ [n],

‖Cov(z)‖ ≤ 1

φ
and

1

ξ2
‖Cov(X

ᵀ
z)‖ ≤ C

1− φ
,

where ξ = maxi∈[n]‖xi‖ is the maximum norm of the input vectors?

As discussed in the two sections above, the first norm captures the robustness and
the second norm captures the covariate balance. Problem 2.5 captures the trade-off
between these quantities through the parameter φ ∈ [0, 1]. As φ→ 1, all emphasis is
placed on robustness and when φ → 0, all emphasis is placed on covariate balance.
The maximum norm ξ = maxi∈[n]‖xi‖ appears as a scaling factor so that the problem
remains unaffected by scaling of the covariates, i.e. α ·X for a scalar α ∈ R.

We now highlight the way in which Problem 2.5 is a discrepancy problem, albeit
a distributional one. Given a set of vectors x1,x2, . . .xn ∈ Rd, the discrepancy vector
of an assignment z ∈ {±1}n is the difference of within-group sums:

X
ᵀ
z =

n∑
i=1

zixi =
∑
i∈Z+

xi −
∑
i∈Z−

xi .

The discrepancy of an assignment is a measurement of the magnitude of the corre-
sponding discrepancy vector, typically with the squared Euclidean norm or the infin-
ity norm. The squared Euclidean norm may be expressed in the following variational
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way:

‖Xᵀ
z‖2 = max

θ∈Rd

‖θ‖=1

〈θ,Xᵀ
z〉2 = max

θ∈Rd

‖θ‖=1

(∑
i∈Z+

〈θ,xi〉 −
∑
i∈Z−
〈θ,xi〉

)2

We now show that Problem 2.5 has the same interpretation, but we are interested
in the distribution of the random discrepancy vector. Using the definition of the
operator norm and expanding terms, we can write the operator norm ‖Cov(X

ᵀ
z)‖

in a similarly variational form,

‖Cov(X
ᵀ
z)‖ = max

θ∈Rd

‖θ‖=1

E
[(∑

i∈Z+

〈θ,xi〉 −
∑
i∈Z−
〈θ,xi〉

)2]
.

The equality above demonstrates that the operator norm ‖Cov(X
ᵀ
z)‖ is the max-

imum expected squared imbalance between the two partitions, as measured by a linear
function of the discrepancy vector. In this sense, ‖Cov(X

ᵀ
z)‖ may be understood as

the distributional extension of the squared Euclidean discrepancy. Of course, the key
aspect of Problem 2.5 is the trade-off between this and the correlation of assignments
‖Cov(z)‖ which we have expressed above in a variational way.

We emphasize here that Problem 2.5 is not subsumed or solved by previously con-
sidered discrepancy problems in the literature. Indeed, the goal of most discrepancy
problems is to produce a single assignment vector z which minimizes a norm of the
discrepancy vector. A naive application of discrepancy minimization to Problem 2.5
is to choose z∗ to be the assignment which minimizes the squared Euclidean norm
‖Xᵀ

z‖2 and construct a distribution by choosing either z∗ or −z∗ with equal prob-
ability. This naive experimental design may result in substantial covariate balance,
as ‖Cov(X

ᵀ
z)‖ = ‖Xᵀ

z‖2; however, this design affords virtually no robustness, as it
yields ‖Cov(z)‖ = n. Thus, Problem 2.5 is a truly new discrepancy problem which
requires new insights and algorithmic considerations.

The only other distributional discrepancy problem that we are aware of is the
subgaussian discrepancy problem introduced by Dadush et al. (2019), which led to
the development of the Gram–Schmidt Walk algorithm of Bansal et al. (2019). This
discrepancy problem is similar to ours when considering only φ = 0.

In Problem 2.5, the relevant value of C is a constant, independent of the number
of input vectors n and their dimension d. We remark that C must be at least 1 for
Problem 2.5 to be solvable. For example, ξ−2‖Cov(X

ᵀ
z)‖ cannot be made smaller

than 1 for orthogonal vectors when Pr(zi = 1) = 1/2 for all units i ∈ [n].

2.2.4 Implications for mean squared error analysis

Finally, we demonstrate that an algorithm which solves Problem 2.5 yields an ex-
perimental design under which we can reason about the mean squared error of the
Horvitz–Thompson estimator.

The first insight is that the parameter φ ∈ [0, 1] controls the robustness of the
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design. In particular, the requirements of Problem 2.5 specify that ‖Cov(z)‖ ≤ 1/φ.
As discussed in Section 2.2.1, this controls the increase in the worst-case mean squared
error over the max-min design. In this sense, a maximally robust design is achieved
for φ = 1 and less robustness is offered as φ decreases.

The second insight is that decreasing φ can lead to a provable decrease in mean
squared error of the Horvitz–Thompson estimator when the covariates are (at least
somewhat) linearly predictive of the outcomes. This is formalized below as Theo-
rem 2.6.

Theorem 2.6. Suppose that A is an algorithm which satisfies the requirements of
Problem 2.5, taking X and φ ∈ [0, 1] as input. Then, the mean squared error of the
Horvitz–Thompson estimator under the experimental design given by A is bounded by
the loss of the ridge regression:

E[(τ − τ̂)2] ≤ 1

n
· min
β∈Rd

[
1

φ2

1

n

n∑
i=1

(
(ai + bi)− 〈β,xi〉

)2

+
Cξ2

(1− φ)2n
‖β‖2

]
.

Proof. Let β ∈ Rd be an arbitrary vector and let µ̂ = X
ᵀ
β and ε = µ − µ̂ so that

µ = ε+ µ̂. First, we use Lemma 2.2 together with a generalized arithmetic-geometric
(AM-GM) inequality to separate the mean squared error into two parts: one which
depends on the linear prediction µ̂ and the other which depends on the residual ε.
For all γ > 0,

n2 E[(τ − τ̂)2] = µ
ᵀ

Cov(z)µ

= (µ̂+ ε)
ᵀ

Cov(z)(µ̂+ ε)

= µ̂
ᵀ

Cov(z)µ̂+ εCov(z)ε+ 2µ̂
ᵀ

Cov(z)ε

≤ (1 + γ2) µ̂
ᵀ

Cov(z)µ̂+ (1 + γ−2) ε
ᵀ

Cov(z)ε

= (1 + γ2) β
ᵀ

Cov(X
ᵀ
z)β + (1 + γ−2) ε

ᵀ
Cov(z)ε .

By applying the operator norm bound to the quadratic forms and using the bounds
on the two operator norms guaranteed by Problem 2.5, we have that

≤ (1 + γ2) ‖Cov(X
ᵀ
z)‖‖β‖2 + (1 + γ−2) ‖Cov(z)‖‖ε‖2

≤ (1 + γ2)
( ξ2C

1− φ

)
‖β‖2 + (1 + γ−2)

1

φ
‖ε‖2

=
Cξ2

(1− φ)2
‖β‖2 +

1

φ2
‖µ−Xβ‖2 ,

where the final equality follows by setting γ2 = φ/(1 − φ), and recalling that ε =

µ −Xβ. Note that this upper bound holds for an arbitrary vector β, and so the
result follows by minimizing over all such β.

Theorem 2.6 demonstrates the relevance of Problem 2.5 to the experimental design

22



problem and formalizes the balance-robustness trade-off in terms of the precision of
the estimator. Theorem 2.6 demonstrates that the mean squared error depends on
the parameter φ and the degree to which the covariates are predictive of the potential
outcomes. The predictiveness is captured by the minimum loss of a ridge regression of
the potential outcomes on the covariates. Note that the Horvitz–Thompson estimator
itself does not conduct any covariate adjustment, instead being a raw comparison of
outcomes between treatment groups. Indeed, the ridge regression is never actually run
and cannot be performed by the experimenter, as it depends on all potential outcomes.
In this sense, we say that the designs satisfying the requirements of Problem 2.5
conduct regression by design.

The first term in the upper bound of Theorem 2.6 captures how well a linear
function β predicts the potential outcomes using the covariates. This term can be
made small if the potential outcome vector is close to the span of the covariates. The
second term captures the magnitude of the linear function, as measured by the sum
of the squares of the coefficients. The factor ξ2 puts this magnitude on a neutral
scale so that the optimum is not affected by a rescaling of the covariates. The design
parameter φ determines the trade-off between the two terms, assigning more focus
to either finding a function that predicts the outcomes well or one that is of small
magnitude. Put differently, the theorem tells us that the design performs well when
the potential outcomes can be well approximated by a relative simple linear function
of the covariates, as measured by coefficient norm.

In theory, an experimenter might want to resolve the balance-robustness trade-off
by choosing the trade-off parameter φ∗ which minimizes the upper bound on the mean
squared error:

φ∗ =
(

1 +
√
C
ξ‖βls‖
‖ε‖

)−1

.

However, this is not possible because φ∗ depends on the potential outcomes, which
are unknown to the experimenter before running the experiment. It is beyond the
scope of this dissertation to present a formal framework for how experimenters ought
to navigate the balance-robustness trade-off, although we give some recommendations
for setting φ in Section 2.4.2.

We remark that although Theorem 2.6 holds for any sampling algorithm which
satisfies the requirements of Problem 2.5, improved bounds on the mean squared error
may be obtained for specific sampling algorithms. In particular, the AM-GM inequal-
ity introduces some loss which may be avoided by more closely analyzing the crossing
terms. The remainder of the chapter is devoted to describing and analyzing the GSW-
Design, which solves the distributional discrepancy problem (Problem 2.5) and for
which we can obtain an even tighter analysis than that guaranteed by Theorem 2.6.
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2.3 The Gram–Schmidt Walk Design

In this section, we present the Gram–Schmidt Walk Design (GSW-Design) for nav-
igating the balance-robustness trade-off, as formulated in Problem 2.5. At a high
level, GSW-Design operates by attempting to balance augmented covariate vectors.
For each unit i ∈ [n], we define the augmented covariate vector bi ∈ Rn+d to be a
scaled concatenation of the unit’s raw covariate and a unit-unique indicator variable:

bi =

[ √
φei

ξ−1
√

1− φxi

]
,

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the ith basis vector of dimension n. As φ→ 1, the
augmented covariate vectors become a set of orthogonal vectors and as φ → 0, the
augmented covariate vectors begin to more closely resemble the original raw covariate
vectors.

The GSW-Design constructs the augmented covariate vectors and uses them as
input to the Gram–Schmidt Walk Algorithm of Bansal et al. (2019). The Gram–
Schmidt Walk algorithm produces a random assignment vector z ∈ {±1}n so that
the (random) difference between the within-group sums of the augmented vectors
concentrates with high probability around zero, Bz =

∑
i∈Z+ bi −

∑
i∈Z− bi ≈ 0. We

defer the technical discussion of the exact nature of the concentration statements to
later sections.

By balancing the augmented covariate vectors, the GSW-Design balances both
the original raw covariate vectors as well as the unit-unique basis vectors. The design
parameter φ determines to what extent the augmented covariate vectors resemble
either the raw covariate vectors or the orthogonal basis vectors, and thus to what
extent each of these sets of vectors are balanced. This is the key way in which GSW-
Design navigates the robustness-balance trade-off. The algorithm for sampling from
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the GSW-Design is given formally below as Algorithm 1.
Algorithm 1: Gram–Schmidt Walk
1 Initialize a vector of fractional assignments z1 ← (0, 0, . . . , 0).
2 Initialize an index t← 1.
3 Select an initial pivot unit p uniformly at random from [n].
4 while zt /∈ {±1}n do
5 Create the set A ← {i ∈ [n] : |zt(i)| < 1}.
6 If p /∈ A, select a new pivot p from A uniformly at random.
7 Compute a step direction as

ut ← argmin
u

‖Bu‖2

subject to u(i) = 0 for all i /∈ A
u(p) = 1

8 Set δ+ ← |max ∆| and δ− ← |min ∆| where
∆ = {δ ∈ R : zt + δut ∈ [−1, 1]n}.

9 Select a step size at random according to

δt ←

{
δ+ with probability δ−/(δ+ + δ−),

−δ− with probability δ+/(δ+ + δ−).

10 Update the fractional assignments: zt+1 ← zt + δtut.
11 Increment the index: t← t+ 1.

12 return assignment vector zt ∈ {±1}n.
The goal of the algorithm is to make the (random) discrepancy vector of the

augmented covariates Bz concentrate around 0 with high probability. The algorithm
takes on this balancing problem using a relaxation. In particular, the algorithm
relaxes the assignments from the integral values {±1} to the interval [−1, 1]. We refer
to assignments in the interior of this interval as fractional. The algorithm constructs
the assignments by iteratively updating a vector of fractional assignments zt.

The initial fractional assignments are zero: z1 = 0. This means that the aug-
mented covariate vectors start out perfectly balanced, because Bz1 = B0 = 0. The
initial assignments are not acceptable, however, because they are not ±1. The only
acceptable outputs are assignments zt ∈ {±1}n. As the algorithm updates the frac-
tional assignments, the fundamental tension is between maintaining good balance, as
measured by Bzt, and making the assignments ±1. As we move towards ±1, balance
becomes harder to maintain. The algorithm navigates this tension by updating the
assignments in a direction that does not increase the imbalances too much, while
ensuring that the update is large enough to be a sizable step towards integrality.
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The fractional assignments are updated by

zt+1 ← zt + δtut.

The update δtut is comprised of a step size δt and a step direction ut. The algorithm
selects the step direction to minimize the imbalance of the update as measured by
the magnitude of the balance of the augmented covariate vectors:

‖But‖2 =

∥∥∥∥ n∑
i=1

ut(i)bi

∥∥∥∥2

.

As the update is additive, we have Bzt+1 = Bzt + δtBut. In this way, making
‖But‖2 small helps keep ‖Bzt+1‖2 small.

The update direction is selected under two constraints. The first is that the
coordinates corresponding to units that already have ±1 assignments are zero. That
is, we impose u(i) = 0 for all i /∈ A. The purpose is to ensure that these units
maintain their ±1 assignments. The second constraint is that the coordinate for one
unit p ∈ A, which we call the pivot, is one: u(p) = 1. The pivot fills two purposes: the
first purpose is to avoid the trivial solution ut = 0. The second purpose is to avoid
compounding imbalances in the updates, which we discuss more in Section 2.3.3.

With the step direction in hand, the algorithm randomly selects the step size δt to
be one of two candidate values: δ+ and δ−. The candidate values, one positive and one
negative, are the largest scaling factors δt such that the updated assignment vector
zt + δtut is in the cube [−1, 1]n. This ensures that the updated assignments are valid
fractional assignments. It also ensures that at least one unit with an assignment in
the interior of the interval is assigned ±1 at each iteration. The procedure is repeated
until a ±1 assignment vector is reached.

Our implementation of the GSW-Design differs from the original algorithm of
Bansal et al. (2019) only in the choice of pivot unit: we select the pivot uniformly
at random whereas Bansal et al. (2019) deterministically selects the pivot to be the
largest unit. This difference is quite minor and only plays a role in variance esti-
mation, as discussed in Section 2.6.2. A comprehensive comparison between the two
implementations is discussed in Appendix A.1.5.

Figure 2.1 provides an illustration of the algorithm. Panel A depicts the fractional
assignments as an update iteration starts in the third step. Panel B depicts the
selected update direction. This direction depends on the augmented covariates, which
are not illustrated in the figure. Panels C and D show the two possible updates given
by the two candidate step sizes. Panel E depicts the randomly updated assignment
vector at the end of the iteration.
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A. Assignment zt

-1 0 1

B. Step direction ut

-1 0 1

C. Update δ+ut

-1 0 1

D. Update −δ−ut

-1 0 1

E. Assignment zt+1

-1 0 1

Figure 2.1: Illustration of one iteration of the Gram–Schmidt Walk design.

2.3.1 Individual treatment probabilities

We now establish that under the GSW-Design, each unit is equally likely to receive
either treatment assignment. The key insight is that the (random) iterates of the
fractional assignment vector form a martingale, as shown in the following Lemma:

Lemma 2.7. The sequence of fractional assignments z1, z2, . . . forms a martingale.

Proof. Recall that the fractional assignments are updated as zt+1 = zt + δtut. Con-
sider the conditional expectation of the assignments updated at iteration t:

E[zt+1 | z1, . . . ,zt] = zt + E[δtut | z1, . . . ,zt].

By the law of iterated expectations,

E[δtut | z1, . . . ,zt] = E
[
E[δt | δ+

t , δ
−
t ]ut

∣∣ z1, . . . ,zt
]
,

because δt is conditionally independent of (z1, . . . ,zt,ut) given (δ+
t , δ

−
t ). The step

size δt takes the values δ+
t and δ−t with probabilities inversely proportional to their

magnitudes, so

E[δt | δ+
t , δ

−
t ] = δ+

t

(
δ−t

δ+
t + δ−t

)
− δ−t

(
δ+
t

δ+
t + δ−t

)
= 0.

It follows that the expected update is zero: E[δtut | z1, . . . ,zt] = 0.

The martingale property implies that the expectation of the assignments sampled
from the design is zero: E[z] = z1 = 0. This yields the following corollary, which
follows from E[zi] = Pr(zi = 1)− Pr(zi = −1) = 0 for all units.

Corollary 2.8. Under the GSW-Design, Pr(zi = 1) = 1/2 for all i ∈ [n].

Because the marginal treatment probabilities are bounded away from 0, the fol-
lowing corollary follows from Proposition 1.2.

Corollary 2.9. The Horvitz–Thompson estimator is unbiased for the average treat-
ment effect under the GSW-Design.
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The relation E[z] = z1 holds for any initial fractional assignments, which provides
control over the first moment of the assignment vector. We use this insight to extend
the design to non-uniform assignment probabilities in Appendix A.1.6.

2.3.2 Efficient O(n2d) implementation

The structure of the augmented covariates allow us to construct a customized imple-
mentation of the Gram–Schmidt Walk algorithm that is considerably faster than a
general implementation. Appendix A.2 describes this implementation and proves its
computational properties. The results are summarized here.

Lemma 2.10. The Gram–Schmidt Walk terminates after at most n iterations.

Proof. The step direction is selected under the condition that the coordinates of
units with integral assignments are zero. As a consequence, once a unit is assigned an
integral assignment, it keeps that assignment. Furthermore, the candidate step sizes
are selected so that at least one fractional assignment is updated to be integral at
every iteration. The implication is that the number of units with integral assignments
grows by at least one per iteration.

At each iteration, the most computationally intensive operation is the computation
of the step direction, ut. This is a least squares problem, so the solution can be
obtained exactly by solving a system of linear equations. The number of equations at
each iteration is O(n) so that the linear system may be solved using O(n3) arithmetic
operations. Thus, a naive implementation of GSW-Design requiresO(n4) arithmetic
operations to sample an assignment vector.

We obtain a faster implementation which exploits the structure of the augmented
covariates and the repeated linear system solves. In particular, an application of the
Woodbury matrix inversion identity allows us to reduce the least squares problem
to a linear system with d equations followed by a matrix–vector multiplication. In
addition, we maintain a matrix factorization of this smaller linear system for faster
repeated solves. The matrix–vector multiplication requires O(nd) arithmetic opera-
tions and the small linear system solve requires O(d2) arithmetic operations with the
factorization. Together, these two techniques allow us to solve the least squares prob-
lem at each iteration using O(nd) arithmetic operations. These improvements yield
an improved implementation to sample an assignment vector from the GSW-Design
using only O(n2d) arithmetic operations, which is a significant improvement over the
naive implementation.

Proposition 2.11. Assignments from the Gram–Schmidt Walk design can be sampled
using O(n2d) arithmetic operations and O(n+ d2) additional storage.

The proposition tells us that sampling an assignment from the design requires
roughly the same computational resources as computing all pairwise inner products
between the covariate vectors x1, . . . ,xn. The run time of the Gram–Schmidt Walk
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design is therefore on the same order as a greedy implementation of the matched pair
design.

2.3.3 Solving the distributional discrepancy problem

We now demonstrate that the GSW-Design solves Problem 2.5 with C = 1. The key
technical aspect is the following theorem, which bounds the resulting covariance of
the discrepancy of the augmented covariate vectors Cov(Bz) in the Loewner partial
order.

Theorem 2.12. Under the Gram–Schmidt Walk design, the covariance matrix of the
vector of imbalances for the augmented covariates Bz is bounded in the Loewner order
by the orthogonal projection onto the subspace spanned by the columns of B:

Cov(Bz) � P , B
(
B

ᵀ
B
)−1
B

ᵀ
.

Sketch of proof. We will show that vᵀ Cov(Bz)v ≤ vᵀPv for all vectors v ∈ Rn+d.
In Appendix A.1.3, we derive an expression for Cov(z) in terms of the step directions
and sizes used by the algorithm in Section 4.6. This allows us to write the quadratic
form as

v
ᵀ

Cov(Bz)v = v
ᵀ E

[
T∑
t=1

δ2
tButu

ᵀ
tB

ᵀ

]
v = E

[
T∑
t=1

δ2
t 〈But,v〉2

]
,

where T is the final iteration of the algorithm. Note that T is random.
The first part of the proof is to rearrange the terms of this sum. To do so, we

define a pivot phase Si as the set of iterations t for which unit i was the pivot. A
unit’s pivot phase is random and it may be the empty set if the unit was assigned a
±1 without being chosen as the pivot. We can now write

E

[
T∑
t=1

δ2
t 〈But,v〉2

]
=

n∑
i=1

E

[∑
t∈Si

δ2
t 〈But,v〉2

]
.

In the appendix, we show that the expected sum of the squared step sizes within
a pivot phase is bounded by one. This is a consequence of the fact that the same unit
is kept as pivot until it is assigned a value in ±1. Together with the fact that each
column of B has norm of at most one, this allows us to bound the contribution of
each pivot phase to the overall quadratic form as

E

[∑
t∈Si

δ2
t 〈But,v〉2

]
≤ E

[
v
ᵀ
P iv

]
,

where P i denotes the projection onto a subspace that contains the updates But
generated in the pivot phase Si.
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Bansal et al. (2019) show that the updates But and Bus are orthogonal if the
iterations t and s are in different pivot phases. In the appendix, we extend this result
to show that the subspaces corresponding to different pivot phases are orthogonal
and their union is the column space of B, so that

∑n
i=1P i = P with probability one.

We conclude that
n∑
i=1

E
[
v
ᵀ
P iv

]
= v

ᵀ E
[ n∑
i=1

P i

]
v = v

ᵀ
Pv.

We provide a detailed proof of the theorem in Appendix A.1.3. Our proof inter-
prets the procedure as implicitly constructing a random basis for the column space of
B. This reveals the connection between the Gram–Schmidt Walk and its namesake,
the Gram–Schmidt orthogonalization procedure.

Theorem 2.12 therefore demonstrates that the design, as intended, balances the
augmented covariates. The projection matrix P is small: it has at most n eigenvalues
that are one and d eigenvalues that are zero. Another way to see that the augmented
covariates are well-balanced is to consider the variance of linear functions of the
augmented covariates. For every v ∈ Rn+d,

Var
(∑
i∈Z+

〈v, bi〉 −
∑
i∈Z−
〈v, bi〉

)
= v

ᵀ
Cov(Bz)v ≤ vᵀPv ≤ ‖v‖2,

where the inequalities follow from Theorem 2.12 and the fact that projection operators
are contractive.

We now show that the Gram–Schmidt Walk algorithm solves Problem 2.5 with
C = 1. We emphasize that in the later sections of the chapter, we provide an improved
analysis of covariate balancing and mean squared error bounds. The main idea is to
extract the principal submatrices of the matrix inequality given by Theorem 2.12.

Corollary 2.13. The GSW-Design satisfies the requirement of Problem 2.5 with
C = 1. In particular, the random assignment vector z may be sampled used O(n2d)

arithmetic operations and satisfies Pr(zi = 1) = 1/2 for all i ∈ [n] and the operator
norm bounds

‖Cov(z)‖ ≤ 1

φ
and

1

ξ2
‖Cov(X

ᵀ
z)‖ ≤ 1

1− φ
.

Proof. The runtime is established in Proposition 2.11 and the uniform marginal prob-
ability of treatment assignment is established in Corollary 2.8. Thus, it remains to
establish the operator norm bounds.

To this end, recall that all projection matrices are less than the identity matrix in
the Loewner order. Thus, Theorem 2.12 implies that Cov(Bz) � P � I. Observe
that the covariance matrix of Cov(Bz) can be written in block form as

Cov(Bz) =

[
φCov(z) ξ−1

√
φ(1− φ) Cov(X

ᵀ
z, z)ᵀ

ξ−1
√
φ(1− φ) Cov(X

ᵀ
z, z) ξ−2(1− φ) Cov(X

ᵀ
z)

]
.
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By extracting the upper left and lower right blocks in the matrix inequality Cov(Bz) �
I and rearranging terms, we have that

Cov(z) � 1

φ
I and

1

ξ2
Cov(X

ᵀ
z) � 1

1− φ
I .

The claim is established by taking the operator norm of both sides.

This demonstrates the way in which the GSW-Design navigates the balance-
robustness trade-off. In the later sections, we more closely analyze various aspects
of the GSW-Design, including the mean-squared error of the Horvitz–Thompson
estimator, the covariate balancing properties of the design, and the tail behavior of
the Horvitz–Thompson estimator.

2.4 Analysis of the Mean Squared Error

In this section, we present a more refined analysis of the mean squared error of the
Horvitz–Thompson estimator under the GSW-Design. This analysis demonstrates
that GSW-Design acts in a way which we call regression by design, as discussed in
Section 2.2.4. Finally, we discuss several methods for choosing the design parameter
φ ∈ [0, 1] based on finite sample and asymptotic analyses.

2.4.1 Refined bound on the mean squared error

Because GSW-Design satisfies the requirements of Problem 2.5, the mean squared
error of the Horvitz–Thompson estimator under GSW-Design is upper bounded by
Theorem 2.6. However, we can obtain a tighter bound on the mean squared error
by more closely analyzing the crossing terms. The following theorem, which bounds
the mean squared error, follows from a more careful application of Theorem 2.12. Its
proof appears in Appendix A.3.1

Theorem 2.14. The mean squared error under the GSW-Design is at most the
minimum of the loss function of an implicit ridge regression of the sum of the potential
outcome vectors µ = (a+ b) on the covariates:

E
[
(τ̂ − τ)2

]
≤ L

n
where L = min

β∈Rd

[
1

φn

∥∥µ−Xβ∥∥2
+

ξ2

(1− φ)n

∥∥β∥∥2

]
.

Like the mean squared error bound of Theorem 2.6—which holds for any design
satisfying the distributional discrepancy Problem 2.5—the mean squared error bound
of Theorem 2.14 also has the interpretation of regression-by-design. In particular,
the mean squared error depends on the design parameter φ and the degree to which
the covariates are predictive of the potential outcomes. However, the improvement
in Theorem 2.14 over Theorem 2.6 is the dependence on the design parameter φ. In
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particular, the dependence is improved from φ−2 and (1− φ)−2 to φ−1 and (1− φ)−1.
Concretely, this results in a factor 2 decrease in the bound of the mean-squared error
when φ = 1/2. This improvement is obtained by the balancing guarantees of the
augmented covariates, which allows us to more carefully analyze crossing terms.

2.4.2 Choosing the design parameter φ

In this section, we discuss several considerations when choosing the design parameter.
The first observation is the following corollary, which described conditions under
which the experimenter should set φ < 1.

Corollary 2.15. If the scaled sum of cross-moments between covariates and potential
outcomes is greater than the second moment of potential outcomes, ξ−2‖Xᵀ

µ‖2 >

‖µ‖2, then the design parameter φ that minimizes the mean squared error is less than
one.

The corollary provides precise conditions for when it is beneficial to deviate from
the fully randomized design we get when φ = 1. The cross-moments capture the pre-
dictiveness of the covariates. To see this, consider when the covariates and potential
outcomes are demeaned, in which case n−2‖Xᵀ

µ‖2 is the sum of squared covariances
between covariates and potential outcomes, and n−1‖µ‖2 is the variance of the poten-
tial outcomes. Therefore, the left-hand side becomes larger as the covariates become
more predictive.

Note that ‖Xᵀ
µ‖2 tends to grow at an n2-rate if the covariates remain predictive

asymptotically, while ‖µ‖2 tends to grow at an n-rate. Therefore, the left-hand side is
generally much larger than the right-hand side in large samples even if the covariates
are only weakly predictive. The factor ξ2 captures the scaling of the covariates and
the presence of outliers. For well-behaved sets of covariate vectors without extreme
outliers (e.g. covariate vectors sampled from a subgaussian distribution), a reasonable
growth rate of ξ2 is d log(n), meaning that the scaling will generally not be conse-
quential. This tells us that it is almost always beneficial to at least partially balance
the covariates in large samples, so we should set φ < 1. One exception is experiments
with many unpredictive covariates, where φ = 1 often will be optimal.

The following corollary bounds the mean squared error of the Horvitz–Thompson
estimator under the GSW-Design in large samples when the design parameter φ < 1

is fixed.

Corollary 2.16. Let βls ∈ arg minβ‖µ −Xβ‖ be the best least squares linear ap-
proximator of the potential outcomes with smallest norm, and let ε = µ−Xβls be the
errors of those approximations. Fix a design parameter φ < 1. If ‖βls‖2 = o

(
ξ−2n

)
,

then the normalized mean squared error under the GSW-Design is asymptotically
upper bounded by

lim sup
n→∞

[
nE
[
(τ̂ − τ)2

]
− 1

φn
‖ε‖2

]
≤ 0.
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The corollary characterizes the large sample behavior of the design. The condition
‖βls‖2 = o

(
ξ−2n

)
states that the linear coefficients do not diverge at a too fast rate

asymptotically. In Appendix A.3.2, we show that this condition is satisfied if the
second moment of the potential outcomes ‖µ‖2/n stays bounded and the maximum
row norm ξ is asymptotically dominated by the smallest, non-zero singular value of
X. This is the case, for example, when the covariates are of fixed dimension and not
nearly multicollinear, so that Xᵀ

X is invertible.
The asymptotic analysis of Corollary 2.16 suggests a simple heuristic for selecting

the design parameter: set φ ≥ ‖ε‖2/‖µ‖2, which is equal to 1− R2, where R2 is the
coefficient of determination. Recall that the normalized mean squared error under
the fully randomized design, which is minimax optimal, is ‖µ‖2/n. Thus, if we set
φ ≥ ‖ε‖2/‖µ‖2, the error under the Gram–Schmidt Walk design is asymptotically no
worse than the minimax design. For example, if the covariates are only somewhat
predictive, so thatR2 = 0.1, then the heuristic stipulates that we set φ to a value larger
than 1− 0.1 = 0.9. Of course, the R2 value cannot be exactly known before running
the experiment, but it provides a useful heuristic that can leverage the experimenter’s
prior substantive knowledge.

The following corollary demonstrates that an improved mean squared error is
achievable if we let the design parameter vary in the asymptotic sequence.

Corollary 2.17. Under the conditions of Corollary 2.16, the normalized mean squared
error under the GSW-Design with the adaptive parameter choice of φ =

(
1 +

ξ‖βls‖/‖ε‖
)−1 is asymptotically upper bounded by

lim sup
n→∞

[
nE
[
(τ̂ − τ)2

]
− 1

n
‖ε‖2

]
≤ 0.

Note that a normalized mean squared error of ‖ε‖2/n would be attainable if we
somehow had access to all potential outcomes before the experiment started, so we
could calculate βls, and then used the residuals ε from this regression as outcomes
in the experiment. In this sense, ‖ε‖2/n marks the lowest normalized mean squared
error achievable by balancing linear functions. Corollary 2.17 shows that, in this
particular asymptotic regime, we can attain this lower limit when if we carefully
allow the parameter φ to approach 1 with the sample size. It is important to note
that we attain this lower limit by letting the design parameter approach one, but we
cannot set it exactly to one. If we were to set φ = 1, we would get the fully randomized
design, and the normalized mean squared error would be ‖µ‖2/n. Because the design
parameter varies with the asymptotic sequence in Corollary 2.17, experimenters may
find this result less helpful in setting the design parameter.
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2.5 Analysis of Covariate Balancing

In this section, we investigate the covariate balancing properties of the GSW-Design.
First, we obtain a more refined analysis of the covariate balance than what is guaran-
teed by Problem 2.5. Then, we use an existing hardness result to show that improving
the covariate balance by even a constant factor is computationally intractable.

2.5.1 Refined bound on covariate balance

We now present a more refined analysis of the covariate balancing properties of the
GSW-Design than the operator norm bound in Problem 2.5. We begin by presenting
a matrix bound on the covariance matrix of the discrepancy vector of covariates.

Proposition 2.18. Under the GSW-Design, the covariance matrix ofXᵀ
z is bounded

in the Loewner order by

Cov(X
ᵀ
z) �

(
φ(X

ᵀ
X)† + (1− φ)(ξ2Π)†

)†
,

where Π is the orthogonal projection onto the rows of the covariate matrix X and A†

denotes the pseudo-inverse of A.

The matrix in the upper bound is the weighted harmonic mean of two d-by-d
matrices: the Gram matrixXᵀ

X and the scaled projection matrix ξ2Π. When φ = 1,
the bound is the Gram matrix, which is the value the covariate matrix takes when
the assignments are pair-wise indpendent. When φ = 0, the bound is ξ2Π, which is
a scaled version of the projection onto the span of the covariate vectors. When the
covariate vectors span the entire vector space, Π is the identity matrix; otherwise, we
may interpret Π as being the identity matrix on the subspace containing the data.
Intermediate values interpolate between the two extremes.

The matrix bound in Proposition 2.18 yields a bound on the variance of the
difference between the within-group sums of any linear functions of the covariate
vectors. In particular, applying the definition of the Loewner order and evaluating
the quadratic form, we have that for any linear function θ ∈ Rd,

E
[(∑

i∈Z+

〈θ,xi〉 −
∑
i∈Z−
〈θ,xi〉

)2
]
≤ θᵀ

(
φ(X

ᵀ
X)† + (1− φ)(ξ2Π)†

)†
θ .

When θ is a basis vector, then the inequality above bounds the discrepancy of a
single covariate between the two groups. The inequality may be hard to interpret
for a general linear function, but experimenters may use the quadratic form on the
right hand side to investigate an imbalances in the covariates before running the
experiment. In any case, we may use the operator norm bound on the quadratic form
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on the right hand side to obtain a worst-case bound over all linear functions:

E
[(∑

i∈Z+

〈θ,xi〉 −
∑
i∈Z−
〈θ,xi〉

)2
]
≤ ‖θ‖2

φλ−1
G + (1− φ)ξ−2

, (2.1)

where λG is the largest eigenvalue of the Gram matrixXᵀ
X. This bound mirrors the

matrix bound in Proposition 2.18, in that it is a weighted harmonic mean between
λG and ξ2. At the extremes, when φ is either one or zero, the bound is λG and ξ2,
respectively. Intermediate values of φ interpolate between the two end points.

The interpolation is monotone: the bound decreases with φ. This is because
λG ≥ ξ2. This indicates that the imbalance for the worst-case linear function tends to
decrease as the parameter approaches zero. Moreover, (2.1) shows that the magnitude
of λG relative to ξ determines the slope of the decrease. The eigenvalue λG is typically
considerably larger than the norm ξ, so the imbalance tends to decrease quickly with
φ. To see this, let k ∈ [n] be such that ‖xk‖ = ξ = maxi∈[n]‖xi‖, and observe that

λG = max
‖θ‖≤1

n∑
i=1

〈xi,θ〉2 ≥ max
‖θ‖≤1

〈xk,θ〉2 = ‖xk‖2 = ξ2.

The gap introduced by the inequality is large as long as there is not a unit whose
covariate vector has disproportionately large norm and is nearly orthogonal to the
vectors of the other units. The fewer outliers there are, the larger λG will be relative
to ξ2, and the more balance can be achieved.

We remark that no design can improve upon Proposition 2.18 without imposing
structural restrictions on the covariates. In particular, the scaling term ξ2 cannot be
improved for general covariate vectors. To see this, consider a set of covariate vectors
where one xk is orthogonal to the remaining covariate vectors and has the largest
norm, ξ = ‖xk‖. In this case, by choosing the linear function θ = xk, we have that

E
[(∑

i∈Z+

〈θ,xi〉 −
∑
i∈Z−
〈θ,xi〉

)2]
= E

[(∑
i∈Z+

〈xk,xi〉 −
∑
i∈Z−
〈xk,xi〉

)2]
(choice of θ)

= E
[
z2
k〈xk,xk〉2

]
(orthogonality)

= ‖xk‖4 = ξ2 · ‖θ‖2 , (choice of θ)

which demonstrates that (2.1) is tight when φ = 0. In this example, the covariate vec-
tor xk may be considered an outlier. Generally speaking, better covariate balancing
guarantees will not be possible in the presence of outliers.

2.5.2 Computational barriers to improved covariate balance

In this section, we demonstrate that achieving more covariate balance than that
which is guaranteed by Gram–Schmidt Walk design with φ = 0 is computationally
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intractable. Charikar et al. (2011) prove that, given an n-by-n matrix X with ±1

entries, it is NP-hard to determine whether

min
z∈{±1}n

‖Xᵀ
z‖2 ≥ c n2 or min

z∈{±1}n
‖Xᵀ

z‖2 = 0,

where c > 0 is universal, but presently unspecified, constant. We compare this
hardness result to the covariate balance guarantees we prove for the Gram–Schmidt
Walk design with φ = 0. The covariate balance guarantees of Proposition 2.18 imply
that in this case,

E
[
‖Xᵀ

z‖2
]

= tr(Cov(X
ᵀ
z)) ≤ ξ2 tr(Π) ≤ n2,

where the third inequality follows by properties of projection matrices and that X
X has ±1 entries, so ξ2 = n. Thus, improving the covariate balance by even a
constant factor pushes up against the boundary of computational tractability. This
demonstrates that no computationally feasible design can provide a significantly bet-
ter guarantee on expected covariate balance without assumptions on the structure of
the covariates.

2.6 Analysis of Tail Behavior

The previous sections examined the precision of the Horvitz–Thompson under the
GSW-Design in the mean square sense. In this section, we extend the investigation
of precision to tail behavior by deriving a subgaussian tail bound. This provides an
alternative and often sharper description of the properties of the design. Finally, we
discuss how to use this tail inequality to construct confidence intervals.

2.6.1 Subgaussian tail bounds

Bansal et al. (2019) used the martingale inequality of Freedman (1975) to show that
the Gram–Schmidt Walk algorithm produces assignments such that Bz is a sub-
gaussian random vector with variance parameter σ2 ≤ 40. This result allows us to
investigate the behavior of the design in terms tail probabilities. The concern is that
tail bounds based on σ2 = 40 will generally be too loose to be useful in a statisti-
cal context. Unless we are interested in the extreme ends of the tails, Chebyshev’s
inequality based on the mean squared error results in Section 2.4 will be more infor-
mative.

An important contribution of this chapter is to strengthen the analysis of the tail
behavior of the Gram–Schmidt Walk algorithm. We develop a new proof technique
for establishing martingale concentration, thus obtaining a tight upper bound on the
subguassian parameter.
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Theorem 2.19. Under the Gram–Schmidt Walk design, the vector Bz is subgaussian
with variance parameter σ2 = 1:

E
[
exp
(
〈Bz,v〉

)]
≤ exp

(
‖v‖2/2

)
for all v ∈ Rn+d.

Sketch of Proof. Recall the projection matrix P = B
(
B

ᵀ
B
)−1
B

ᵀ from Theorem 2.12.
Because projection is a contractive operator, we have

exp
(
‖Pv‖2/2

)
≤ exp

(
‖v‖2/2

)
for all v ∈ Rn+d.

Therefore, to prove the theorem, it suffices to show that

E
[
exp
(
〈Bz,v〉 − ‖Pv‖2/2

)]
≤ 1.

Following the proof of Theorem 2.12, we decompose the assignment vector into its
fractional updates and then group them according to pivot phases,

〈Bz,v〉 =
T∑
t=1

δt〈But,v〉 =
n∑
i=1

∑
t∈Si

δt〈But,v〉.

Similarly, we decompose the projection P into the mutually orthogonal projections
given by each pivot phase:

‖Pv‖2 =

∥∥∥∥ n∑
i=1

P iv

∥∥∥∥2

=
n∑
i=1

‖P iv‖2,

where, as in the proof of Theorem 2.12, P i denotes the projection matrix onto the
subspace corresponding to pivot phase i that contains the updates {But : t ∈ Si}.

We consider the difference Di between the two decompositions separately for each
potential pivot unit i:

Di =
∑
t∈Si

δt〈But,v〉 − ‖P iv‖2/2.

This allows us to write

E
[
exp
(
〈Bz,v〉 − ‖Pv‖2/2

)]
= E

[
exp

( n∑
i=1

Di

)]
= E

[
n∏
i=1

exp(Di)

]
.

If a unit is never chosen as the pivot, the corresponding pivot phase is empty and
Di = 0. We can therefore restrict the product to the units which at some point are
pivots. For notational convenience in this proof sketch, suppose that the pivot units
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are 1, 2, . . . , r and they are chosen as pivots in this order. We then have

E

[
n∏
i=1

exp(Di)

]
= E

[
r∏
i=1

exp(Di)

]
.

Consider a pivot unit i, where 1 ≤ i ≤ r. Let ∆i denote all random decisions made
by the algorithm up to and including when i is chosen as the pivot. This includes all
randomly chosen step sizes in the pivot phases 1, . . . , i− 1, but not the step sizes in
phases i, . . . , r. The key part of the argument, which we prove in Appendix A.1.4, is
that

E
[
exp(Di)

∣∣∆i

]
≤ 1.

This follows from the choice of the step sizes, the fact that a unit remains a pivot
until it is assigned a ±1, and the fact that each column of B has norm at most one.

We can now prove the inequality by backward induction. Because ∆r includes all
random decisions before unit r was selected as pivot, the quantities D1, . . . , Dr−1 are
not random conditional on ∆r. Using the law of iterated expectation, we can write

E

[
r∏
i=1

exp(Di)

]
= E

[
E
[
exp(Dr)

∣∣∆r

] r−1∏
i=1

exp(Di)

]
≤ E

[
r−1∏
i=1

exp(Di)

]
.

The proof is completed by induction over the remaining r − 1 pivot phases.

The central step in the proof, which appears in Apppendix A.1.4, is bounding the
conditional expectation of the exponential quantity during a pivot phase. Previous
proof techniques bound this quantity through Taylor series approximations, which
necessarily incur a loss in approximation and result in overly conservative subgaussian
constants. In contrast, our proof analyzes the expected exponential quantity directly
by carefully considering the choice of step size and another backwards induction
argument. In this way, we can obtain σ2 = 1, which is tight. This proof technique
may be of independent interest for studying martingale concentration more generally.

Theorem 2.19 shows that linear functions of the augmented covariates are well
concentrated. Because the augmented covariates contain the raw covariates, this
implies concentration of the imbalance of any linear function of the covariates. This
concentration becomes tighter as the design parameter φ decreases. The proof of this
is analogous to the derivation of the covariate balance results in Section 2.5 using
Theorem 2.12. However, in the interest of space, our focus in the rest of the section
is concentration of the estimator and the construction of confidence intervals.

2.6.2 Confidence intervals

The sharpened tail bound allows us to show that the Horvitz–Thompson estimator
is subgaussian as well. This yields an interval estimator for the average treatment
effect. The following proposition and corollary provide the details.
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Theorem 2.20. Under the Gram–Schmidt Walk design, the mass of the tails of the
sampling distribution of the Horvitz–Thompson estimator is bounded by

Pr
(
|τ̂ − τ | ≥ γ

)
≤ 2 exp

(
−γ2n

2L

)
for all γ > 0.

Proof. We prove the bound for the upper tail. The proof for the lower tail is identical.
For any t > 0, we have

Pr
(
τ̂ − τ ≥ γ

)
≤ exp(−tγ)E

[
exp
(
t(τ̂ − τ)

)]
.

This can be shown either as a consequence of Markov’s inequality or from the ex-
ponential inequality 1[x ≥ 0] ≤ exp(tx). Lemma 2.1 in Section 2.1.2 shows that
τ̂ − τ = 〈z,µ〉/n. The columns of B are linearly independent by construction, so we
can define a vector v = tn−1B

(
B

ᵀ
B
)−1
µ. This allows us to write

E
[
exp
(
t(τ̂ − τ)

)]
= E

[
exp
(
tn−1〈z,µ〉

)]
= E

[
exp
(
〈Bz,v〉

)]
.

Theorem 2.19 upper bounds the right-hand side by exp(‖v‖2/2). For the current
choice of v, the squared norm simplifies to

‖v‖2 =
t2

n2
µ

ᵀ(
B

ᵀ
B
)−1
µ =

t2L

n
,

where the final equality follows from Lemma A.8 in Appendix A.3.1. Taken together,
we obtain

Pr
(
τ̂ − τ ≥ γ

)
≤ exp

(
t2L

2n
− tγ

)
.

The proof is completed by setting t = γn/L.

Corollary 2.21. The random interval centered at τ̂ with radius γα =
√

2 log(2/α)L/n

is a valid (1− α)-confidence interval:

Pr
(
τ̂ − γα ≤ τ ≤ τ̂ + γα

)
≥ 1− α.

The corollary illustrates the usefulness of the sharpened tail bound in Theo-
rem 2.19. Confidence intervals based on the tail bound in Bansal et al. (2019) would
be
√

40 ≈ 6.3 times wider than the intervals in Corollary 2.21.
We emphasize here that the confidence intervals described in Corollary 2.21 can-

not directly be used by an experimenter because they contain the term L/n. This
term, which upper bounds the variance of the Horvitz–Thompson estimator by (The-
orem 2.14), depends on all potential outcomes, half of which are unknown to the ex-
perimenter. Thus, one way to construct confidence intervals based on Corollary 2.21 is
to first estimate L/n and then plug-in this estimator L̂/n into the intervals described
in Corollary 2.21.
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Indeed, most confidence intervals proposed in the literature work in this way: first,
a tail inequality or the tail of a limiting distribution is derived in which the only un-
known quantity is the variance of the point estimator. Then, the variance itself must
be (conservatively) estimated and this estimate is used to construct the confidence in-
terval. Analyses of the validity of such confidence intervals are asymptotic: informally
speaking, if the variance estimator is consistent or conservative, then the confidence
intervals are asymptotically valid. It is a significant open problem to construct con-
fidence intervals for average treatment effects which are valid in finite samples in the
potential outcome framework considered here. Under stronger assumptions on the
potential outcomes, such as constant individual treatment effect (ITE) among units,
different types of confidence intervals may be obtained, e.g. Fisher type permutation
tests.

Thus, in short, the quantity L/n must be estimated in order to produce confidence
intervals from Corollary 2.21. This type of estimation is the focus of Chapter 3, and
so we refer readers to that chapter for computational methods on estimating L. A
simpler method for variance estimation is described in the working paper (Harshaw
et al., 2021). Either way, the following lemma is a key insight for estimating L:

Lemma 2.22. The second-order assignment probabilities are bounded away from zero
under the GSW-Design for all pairs of units and all treatments:

Pr
(
(zi, zj) = v

)
>

1

4n
min

{
φ,

φ2

1− φ

}
for all i 6= j and all v ∈ {±1}2.

In the remainder of the section, we compare confidence intervals obtained by
Corollary 2.21 to confidence intervals obtained in other ways. In this discussion, we
ignore the issues of variance estimation described above.

A comparison between the intervals in Corollary 2.21 and conventional intervals is
intricate. One aspect is that our intervals do not rely on asymptotic approximations.
This makes them particularly useful in experiments with small samples because large
sample approximations may not be appropriate in such settings. However, this comes
at the cost of potentially wider intervals. For example, a common approach is to
approximate the distribution of the estimator with a normal distribution. Using
the variance bound in Theorem 2.14, such an approach would suggest intervals with
radius

√
L/n Φ−1

(
1 − α/2

)
where Φ−1 : [0, 1] → R is the quantile function of the

standard normal deviate. Hence, for confidence levels 95% and 99%, the intervals
in Corollary 2.21 would be about 1.39 and 1.26 times wider than those based on a
normal approximation.

It remains an open question whether the sampling distribution of the Horvitz–
Thompson estimator approaches a normal distribution under the Gram–Schmidt
Walk design. Li et al. (2018) show that rerandomization does not yield estimators that
are asymptotically normal. The Gram–Schmidt Walk design resembles rerandomiza-
tion in some aspects, but it does not truncate the distribution of the design in the
way rerandomization does. We conjecture that the Horvitz–Thompson estimator is
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asymptotically normal under the GSW-Design. However, until this has been shown
formally, experimenters should exercise caution when using a normal approximation
even when the number of units is large.

As an illustration, consider confidence intervals based on Chebyshev’s inequality.
Using the variance bound in Theorem 2.14, this inequality would suggest intervals
with radius

√
L/αn. For confidence levels 95% and 99%, these intervals are about

1.6 and 3.1 times wider, respectively, than the intervals in Corollary 2.21. However,
Chebyshev’s inequality holds for the variance of the estimator, so we do not need to
use the variance bound in Theorem 2.14. Because the bound in Theorem 2.14 can
be somewhat loose, confidence intervals based on Chebyshev’s inequality using the
variance could be narrower than the intervals in Corollary 2.21. That is, Var(τ̂)/α

may be smaller than 2 log(2/α)L/n because L/n is larger than Var(τ̂). It is when the
design parameter φ is close to zero that the variance bound in Theorem 2.14 tends
to be loose. However, as we noted in Section 2.4, it is often beneficial to set φ to a
value closer to one, in which case the bound is sharper.

2.7 Kernelizing the Gram–Schmidt Walk Design

One limitation of the GSW-Design presented in Section 2.3 is that the Horvitz–
Thompson estimator has been shown to enjoy improved precision only when the
outcomes are linearly related to the covariates. In many practical settings, the exper-
imenter may believe that outcomes are better approximated by a non-linear function
of the covariates. In these settings, the GSW-Design does not seem to offer a clear
improvement in precision.

In this section, we show that a simple modification of the GSW-Design allows
for improved precision when outcomes are related to the covariates in a non-linear
way. In particular, we propose the use of kernel methods in the construction of the
augmented covariate vectors. This kernel modification of the GSW-Design has the
interpretation of lifting the covariates to a much higher dimensional vector space,
where these higher dimensional vectors are balanced by the GSW-Design. Such a
technique is referred to as the “kernel trick” and has been used in a variety of statistical
methods including regression, classification, and unsupervised learning.

The main technical result is a generalization of the mean squared error bound
of Theorem 2.14. Informally speaking, we show that by kernelizing the GSW-
Design, the Horvitz–Thompson estimator enjoys improved precision when the out-
comes are well-approximated by a “simple” function in the associated Reproducing
Kernel Hilbert Space. Similarly, a generalization of the subgaussian tail bound for the
Horvitz–Thompson estimator (Proposition 2.20) under the kernelized GSW-Design
also holds, but we focus our discussion on the mean squared error in the interest of
space. We remark here that the results in this section are new and do not appear in
the working paper (Harshaw et al., 2021).
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2.7.1 Primer on the theory of kernels and RKHS

In this section, we give a primer on the theory of kernels and Reproducing Kernel
Hilbert Spaces (RKHS). A reader who is familiar with this material may wish to
glance at our notation presented here and then skip to Section 2.7.2 where we present
the kernelized GSW-Design. Readers unfamiliar with the theory of kernels and
RKHS should read this section for a high level understanding of the material. For a
more complete treatment of the material, we refer readers to the textbooks (Berlinet
and Thomas-Agnan, 2004; Steinwart and Christmann, 2008) and the excellent course
notes of Gretton (2020), on which our primer is based.

We begin our discussion by presenting the definition of a kernel.

Definition 2.23. Let X be a non-empty set. A function k : X × X → R is a kernel
if there exists a Hilbert space3 (V , 〈·, ·〉V) and a mapping ψ : X → V such that

k(x,y) = 〈ψ(x), ψ(y)〉V .

Note that Definition 2.23 places virtually no restriction on the underlying set X .
For example, the set X may consist of discrete points, it may be a subset of Rd, or
it might be some cartesian product of the two. In our application, X will be the
covariate space. In this way, each unit i ∈ [n] will have an associated pre-treatment
covariate xi ∈ X .

The mapping ψ : X → V is referred to as the feature map. The feature map
assigns each point in the space of covariates to a high-dimensional representation in
V . The Hilbert space V may be infinite dimensional, so it is infeasible to store—let
alone compute—the feature mapping ψ(x). However, a closed form expression of the
kernel is typically available, as we will see below.

We now list a few very simple examples of kernels and we will see more complicated
ones throughout the section.

• Ex 1: Identity kernel: Let X = {1, 2, . . .m} be a finite set. The function

k(i, j) = 1[i = j]

is the identity kernel. This kernel is realized by the vector space V = Rn and the
feature mapping ψ(i) = ei, where e1, e2, . . . en are a set of orthonormal vectors.

• Ex 2: Linear kernel Let X = Rd. The function

k(x,y) = 〈x,y〉

is the linear kernel. This kernel is realized by the vector space V = Rn and the
identity feature mapping ψ(x) = x.

3A Hilbert space is an inner-product space satisfying a technical condition. Namely, that the
induced metric dV(x,y) = ‖x− y‖V =

√
〈x− y,x− y〉V is complete.
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• Ex 3: A more interesting kernel Let X = R2. The function

k(x,y) = x(1)y(1) + x(2)y(2) + x(1)x(2)y(1)y(2)

is a kernel. This kernel is realized by the vector space V = R3 and the mapping

ψ(x) =

 x(1)

x(2)

x(1)x(2)

 .

For a given kernel, we remark that the feature mapping ψ and the Hilbert space
V are not unique. At this point, it might seem like the definition of kernels is so
broad that it might include any function k : X ×X → R. However, this is not so. In
particular, a kernel satisfies certain structural properties, such as the inequality

k(x,y)2 ≤ k(x,x)k(y,y) ,

which follows from applying the Cauchy-Schwarz inequality in the Hilbert space V .
Kernels have a whole calculus that helps us build larger kernels from smaller ones.

We state a few of these rules precisely below.

Fact 2.24. Let k1 and k2 be kernels on a set X and let α be a non-negative scalar.
The following functions are also kernels on X .

• (Non-negative scaling) k = α · k1.

• (Addition) k = k1 + k2.

• (Products) k = k1 · k2.

Verifying the non-negative scaling and addition rules are straightforward, while
verifying the product rule requires a bit more care. These basic ideas in Fact 2.24
can be extended to analytic functions with non-negative coefficients. Suppose that g
is an analytic function that converges in the open interval (−r, r), i.e.

g(z) =
∞∑
n=0

anz
n |z| < r, z ∈ R.

If X is defined to be the open
√
r-ball in Rd and the Taylor series coefficients are

nonnegative, ai ≥ 0, then

k(x,y) = g(〈x,y〉) =
∞∑
n=0

an〈x,y〉n

is a kernel. This is effectively a limit argument applied to the properties in Fact 2.24.
The calculus in Fact 2.24 (along with analytic extensions) allows us to construct many
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new kernel functions without explicitly writing down the feature mapping. We list a
few here below.

• Ex 4: Polynomial kernel: Let X = Rd and let m be a positive integer and
c ≥ 0. The function

k(x,y) =
(
〈x,y〉+ c

)m
is the polynomial kernel. To see that this is indeed a kernel, observe that by the
binomial theorem,

k(x,y) =
(
〈x,y〉+ c

)m
=

m∑
`=0

(
m

`

)
〈x,y〉m−`c`.

Because 〈x,y〉 is a kernel and the product of kernels are kernels, we have that
〈x,y〉m−` is a kernel for each ` = 0, . . .m. The proof is completed by using the
fact that the non-negative sum of kernels is a kernel.

• Ex 5: Exponential Kernel: Let X = Rd. The function

k(x,y) = exp
(
〈x,y〉

)
is the exponential kernel. The fact that this is a kernel may be verified by
applying composing the linear kernel with the exponential function, which is an
analytic function with non-negative coefficients.

• Ex 6: Gaussian Kernel: Let X = Rd and let σ > 0. The function

k(x,y) = exp

(
−‖x− y‖

2

2σ2

)
is the gaussian kernel. Verifying that this is a kernel is somewhat involved and
so we omit a proof sketch.

The Gaussian kernel is a popular kernel in machine learning. The Gaussian kernel
acts as a similarity function, where the similarity between a pair of points decays
exponentially in their distance. The parameter σ controls this rate of decay and is
referred to as the bandwidth.

One of the most interesting aspects of kernels is that a kernel on X defines a
space of functions on X , which is known as the Reproducing Kernel Hilbert Space.
We state this definition formally below.

Definition 2.25. Let (H, 〈·, ·〉H) be a Hilbert space of R-valued function on a non-
empty set X . A function k : X×X → R is a reproducing kernel andH is a reproducing
kernel hilbert space (RKHS) if

• For all x ∈ X , k(·,x) ∈ H.

44



• For all x ∈ X and f ∈ H, 〈f, k(·,x)〉H = f(x).

The first condition requires that for each element x ∈ X , the function obtained by
fixing one argument of the kernel (i.e. hx(y) = k(y,x)) is in the RKHS. The second
condition stipulates that evaluation of a function f in the RKHS on an element x ∈ X
is obtained by the RKHS inner product between f and hx(y) = k(y,x). Given a
kernel, k, there is a unique RKHS for which k is the reproducing kernel.

The RKHS is itself a Hilbert space and so it is equipped with the norm ‖f‖H =√
〈f, f〉H. The RKHS norm captures complexity or irregularity of a function in the

RKHS. Of course, this depends on the underlying kernel and its interpretation. To
demonstrates this, we discuss two examples.

The first example is the RKHS corresponding to the linear kernel. Recall that the
linear kernel is defined on X = Rd and the kernel is the standard Euclidean inner
product, k(x,y) = 〈x,y〉. The corresponding RKHS is

H = {fβ(x) = 〈β,x〉 for β ∈ Rd} with 〈fβ, fβ′〉H =
d∑
i=1

β(i)β′(i) = 〈β,β′〉 .

Note that this is all linear functions on Rd, which is isomorphic to Rd itself. The RKHS
norm is exactly the sum of the squares of the coefficients of the linear function, i.e.
‖fβ‖H =

∑n
i=1 β(i)2. As discussed in Section 2.2.4, the sum of the squares of the

coefficients of a linear function is typically used as a measure of its complexity.
The second example is the RKHS corresponding to the Gaussian kernel. For

simplicity, we restrict our discussion to d = 1 dimension, although a similar charac-
terization may be obtained in the multivariate setting. The Gaussian kernel admits
the eigendecomposition

k(x, x′) = exp

(
−(x− x′)2

2σ2

)
=
∞∑
`=1

λ`e`(x)e`(x
′) ,

where λ` = b` for b, a constant which is increasing with the bandwidth σ and e`(x) =

exp(−γx2)H`(c · x), where H` is the `th-order Hermite polynomial and c and γ are
constants depending on σ (see, e.g. Section 4.3 in Rasmussen and Williams, 2006).
As ` increases, the basis functions e`(x) increase in complexity. Let L2 be the set of
real-valued square integrable functions on R with respect to the Gaussian measure.
Functions f, g ∈ L2 admit an expansion in an orthonormal system {e`}∞`=1,

f(x) =
∞∑
`=1

f̂`e`(x) g(x) =
∞∑
`=1

ĝ`e`(x)
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and the standard inner product on L2 is defined as

〈f, g〉L2 =
〈 ∞∑
`=1

f̂`e`(x),
∞∑
`=1

ĝ`e`(x)
〉
L2

=
∞∑
`=1

f̂`ĝ` .

We are now ready to describe the RKHS norm with respect to the Gaussian kernel.
The inner product is similar to the standard L2 inner product, except that it features
a penalty on the roughness / irregularity on higher order terms in the basis expansion:

〈f, g〉H =
∞∑
`=1

f̂`ĝ`
λ`

inducing the norm ‖f‖2
H =

∞∑
`=1

f̂ 2
`

λ`
.

The RKHS is the subset of functions L2 for which the norm ‖f‖2
H converges. Note

that the norm converges only when the higher order terms in the basis expansion
decay at a rate faster than λ` = b`. In this sense, a function of low RKHS norm is
simple, as it does not involve a significant amount of higher order terms.

A variety of interesting kernels have been developed in the machine learning com-
munity for specific applications. Several kernels have been proposed for data which is
represented by a graph (Kondor and Lafferty, 2002; Smola and Kondor, 2003; Vish-
wanathan et al., 2010). The kernels have interpretations of capturing random walks
or diffusion processes on the graph and the RKHS norm typically measures the ir-
regularity of the function with respect to the edges in the graph. Another interesting
type of kernel is the Neural Tangent Kernel, which is obtained as the infinite-width
limit of a neural network trained on a squared loss using gradient descent (Jacot
et al., 2018). These kernels were proposed to provide insight to training dynamics
and generalization properties of the neural network. It is possible that experimenters
may benefit from these recent advances in kernel methods, but such a connection is
beyond the scope of this chapter.

2.7.2 The kernelized GSW-Design

We assume that the experimenter has already collected pre-treatment covariates
x1,x2, . . .xn ∈ X for each unit and that a kernel k has been selected. We remark that
the covariates are not limited in any structural way. In particular, the covariates do
not need to be vectors in Rd. Categorical and numerical data may be used together,
so long as an appropriate kernel is defined. How experimenters should choose the
kernel is beyond the scope of this work, although prior substantive knowledge such as
a pilot study or a generative model of outcomes should be used in determining this
kernel.

Whereas the GSW-Design attempted to balance raw covariate vectors x1,x2 . . .xn ∈
Rd in a linear sense, the kernelized GSW-Design attempts to balance the feature
vectors ψ(x1), ψ(x2), . . . ψ(xn) ∈ V in a linear sense. Because the feature mapping
may be non-linear, balancing these higher dimensional feature vectors in a linear way
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results in balancing the original raw covariate vectors in non-linear ways. The only
modification in the kernelized GSW-Design is the construction of the augmented
covariates. In particular, we would like to construct the kernelized augmented covari-
ates b1, b2, . . . bn ∈ Rn × V as

bi =

[ √
φei√

1−φ
ξ
ψ(xi)

]
∈ Rn × V ,

where ξ = maxi∈[n]‖ψ(xi)‖ is the largest norm of the feature vectors. These aug-
mented covariates would be ideal as they directly balance the feature vectors in a
linear manner. Unfortunately, the feature embedding ψ(xi) is very high (possibly
infinite) dimensional and so we cannot store or compute them. Here, we use the
so-called “kernel trick” which is the following observation: the GSW-Design only
requires knowing the inner products between all augmented covariate vectors, which
may be computed as

〈bi, bj〉 =
(1− φ

ξ

)〈
ψ(xi), ψ(xj)

〉
V

=
(1− φ

ξ

)
k(xi,xj) .

With this kernel trick in mind, we now describe a more mechanical way to sample
an assignment from the kernelized GSW-Design. Let K be the symmetric n-by-n
symmetric kernel matrix whose (i,j)th entry is the kernel evaluated on the ith and
jth covariates, i.e. K(i, j) = k(xi,xj). Let ξ2 = maxi∈[n] k(xi,xi) be the maximum
kernel evaluation over the covariates. Next, construct a matrix factorization K =

M
ᵀ
M , where M is n-by-n with columns m1,m2, . . .mn ∈ Rn. Given the design

parameter φ ∈ [0, 1], we define the kernelized augmented covariate vectors as

bi =

[ √
φei√

1−φ
ξ
mi

]
∈ R2n .

By construction, the vectors m1,m2, . . .mn satisfy the property that 〈mi,mj〉 =

k(xi,xj) so that the inner product between augmented covariate vectors is 〈bi, bj〉 =

(1 − φ)/ξ · k(xi,xj), as desired. As assignment is drawn from the kernelized GSW-
Design by running the GSW-Design on these augmented covariate vectors.

Using the computational techniques discussed in Section 2.3.2 (and described in
detail in Section A.2), a sample may be drawn using O(n3) arithmetic operations,
as the vectors m1,m2, . . .mn are generally n-dimensional. Moreover, an additional
one-time cost of O(n2) kernel evaluations is required to construct the kernel matrix
K. It is possible that the kernel matrix may be well-approximated using fewer kernel
evaluations either by Nyström sampling (Drineas and Mahoney, 2005; Gittens and
Mahoney, 2013) or random projection (Yang et al., 2017) methods. However, the
computational speed up will generally be inconsequential to experimenters who may
view the construction of the kernel matrix as a one-time pre-processing cost.
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2.7.3 Analysis of the mean squared error

We now present the main result of this section, which is a bound on the mean squared
error of the Horvitz–Thompson estimator under the kernelized GSW-Design. The
proof of this theorem is similar to that of Theorem 2.14, except that it makes use of
the representer theorem (Schölkopf et al., 2001) to obtain the kernel ridge regression
loss. The proof appears in Appendix A.3.5.

Theorem 2.26. Let X be the space of covariates, let k : X × X → R be a kernel on
the covariates, and let (H, 〈·, ·〉H) be the associated RKHS. The mean squared error of
the Horvitz–Thompson estimator under the kernelized GSW-Design is at most the
minimum of the loss function of an implicit kernel ridge regression of the sum of the
potential outcomes on the covariates:

E
[
(τ̂ − τ)2

]
≤ 1

n
·min
f∈H

[
1

φ
· 1

n

n∑
i=1

(
(ai + bi)− f(xi)

)2
+

ξ2

(1− φ)n

∥∥f∥∥2

H

]
.

In many ways, Theorem 2.26 resembles Theorem 2.14. The design parameter φ ∈
[0, 1] trades off the emphasis between two terms in the objective: one which captures
the fit of the regression and the second which captures its complexity. The first term
measures how well the outcomes are approximated by the function of the covariates.
The second term is the RKHS norm of the approximator, which (for most kernels)
is considered a measure of the irregularity of complexity of the function. In this
way, Theorem 2.26 demonstrates that the Horvitz–Thompson estimator achieves high
precision under the kernelized GSW-Design when the outcomes are well-explained
by a simple function in the RKHS defined by the kernel. This extends the “regression-
by-design” result to non-linear regressions.

2.8 Conclusion and Open Problems

There are several open questions suggested by this work. Answering any of the
following methodological questions would shed light on the nature of the balance-
robustness trade-off in ways we have not yet explored here.

• Instance-Optimal Subguassian Bound: Show the subgaussian bound on the
Horvitz–Thompson estimator under the GSW-Design (Theorem 2.20) holds
when L/n is replaced by the variance of the estimator, Var(τ̂). We have demon-
strated a subgaussian tail bound on the Horvitz–Thompson estimator under the
GSW-Design with L/n in the denominator, which is an upper bound on the
variance; replacing this upper bound with the true variance would yield tighter
tail bounds, especially when φ is further away from 1. Currently, the subgaus-
sian bound on the Horvitz–Thompson estimator follows from the subgaussian
bound of the discrepancy vector returned by the Gram–Schmidt Walk algo-
rithm, which is σ2 ≤ maxi∈[n]‖bi‖2 (Theorem 2.19). In general, this subgaussian
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constant σ2 is tight (e.g. on orthogonal input vectors) and so improving the
subgaussian analysis of the discrepancy vector would require that σ2 depends
on all the input vectors in a finer way. Any improved analysis would use very
different techniques than those presented here.

• Asymptotic Normality: Prove that under certain regularity conditions on the
potential outcomes, the Horvitz–Thompson estimator is asymptotically normal
under the GSW-Design. This would motivate the use of smaller confidence
intervals in large samples based on a normal approximation, which would be
asymptotically valid and are typically smaller than intervals obtained from the
subgaussian bound. The main challenge here is that the GSW-Design intro-
duces minor amounts of dependence between all assignments. This precludes
establishing central limit theorems using modern techniques, such as Stein’s
method via dependency graphs, as the degree of the dependency graph in this
setting would grow too rapidly with n.

• Online Covariate Balancing: Construct an online algorithm for Problem 2.5
where C is a constant, independent of n and d—or show that no such algorithm
exists. In this chapter, we considered the setting where all covariate vectors
are known prior to assignment; however, it is common in many real-world set-
tings that units need to be assigned in a sequential manner as they arrive to
the study. In these settings, one cannot directly apply the GSW-Design. In
the online setting, the experimenter observes covariate vectors in a sequence
x1,x2 . . .xT . At each iteration t, the experimenter must randomly assign treat-
ment zt ∈ {±1} after observing all previous covariate vectors x1,x2, . . .xt and
before observing the next covariate vector xt+1. Constructing a design which
navigates the balance-robustness trade-off in the online setting would be valu-
able to experimenters as well as interesting in the growing literature on online
discrepancy algorithms.
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Chapter 3

Optimized Variance Estimation under
Interference and Complex
Experimental Designs 1

3.1 Introduction

The design-based approach to causal inference considers random assignment of treat-
ments as the only source of randomness. In this framework, the variance of treatment
effect estimators depends on products of potential outcomes. But such products
cannot be estimated well, even under well-behaved designs, because some pairs of
potential outcomes are never observed at the same time. Without additional assump-
tions, unbiased and consistent variance estimation is not possible in the design-based
setting.

To demonstrate this, we present a very simple example. Consider an experiment
with n = 1 unit whose outcomes under treatment (z1 = 1) and control (z1 = −1) are
a1 and b1, respectively. The treatment effect is the contrast of these two outcomes:
τ = a1 − b1. Under the Bernoulli design where Pr(z1 = 1) = 1/2, the Horvitz–
Thompson estimator is simply τ̂ = 2z1y1, where y1 is the observed outcome. The
Horvitz–Thompson estimator is unbiased, E[τ̂ ] = τ and its variance is

Var(τ̂) = a2
1 + b2

1 + 2a1b1 .

Although the terms a2
1 and b2

1 may be estimated without bias, the product a1b1 is
never observed. In fact, no information from one run of the experiment can inform
us about even the sign of this term a1b1. This problem remains even as the sample
size grows : indeed, there exists neither an unbiased nor a consistent estimator of the
variance (Imbens and Rubin, 2015).

1Based on the working paper: Christopher Harshaw, Joel Middleton, and Fredrik Sävje (2021)
“Optimized Variance Estimation under Interference and Complex Experimental Designs”. Forth-
coming.
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The variance estimation problem is more challenging in the presence of interfer-
ence and under complex designs. When the experiment exhibits interference (defined
formally in Section 3.2.1), some pairs of potential outcomes between units are also
necessarily unobserved. For example, interference arises in social network experi-
ments, where a unit can be directly treated (treatment is received), indirectly treated
(a neighbor receives treatment) or untreated (the unit nor its neighbors receive treat-
ment). If a unit is treated, then all of its neighbors must receive either direct or
indirect treatment. In this way, two neighboring units cannot receive direct treat-
ment and control, which exacerbates the problem of variance estimation. Complex
designs, such as matched-pair designs, cluster randomization, and various block de-
signs, restrict the treatment assignment so that two units are never assigned a specific
configuration of treatments, which also further exacerbates the variance estimation
problem.

The goal of this chapter is to address the variance estimation problem under
complex experimental designs by constructing improved variance estimators. Unlike
previous works (reviewed in Section 3.1.2) which construct variance estimators in
specific settings, we consider arbitrary interference, arbitrary designs, and a large
class of linear point estimators that includes all commonly used treatment effect
estimators. Our work is centered on obtaining variance bounds, which are upper
bounds on the variance which themselves admit unbiased and consistent estimators.
The main contributions are summarized as follows:

• In Section 3.2, we describe and characterize the variance estimation problem
under arbitrary interference for arbitrary designs for the full class of linear
estimators. In particular, we characterize those variance bounds which are
admissible for the problem of variance estimation.

• In Section 3.3, we propose an optimization based framework, termed OPT-VB,
for selecting an admissible variance bound. We describe methods which allow
an experimenter to select a variance bound based on their level of risk aversion
and prior substantive knowledge about the unknown potential outcomes. An al-
gorithm for testing admissibility of a variance bound is described in Section 3.4.

• In Section 3.5, we discuss how a variance estimator may be obtained from a
variance bound. In particular, we describe a Horvitz–Thompson estimator of
the variance bound and give conditions under which it is consistent. We argue
that this consistency condition may inform the choice of variance bound and
the setting of OPT-VB.

3.1.1 Variance bounds: an illustration

In this section, we provide a stylized experimental setting with interference to illus-
trate the concept of variance bounds. A formal discussion of the general experimental
setting is deferred to Section 3.2.
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Social scientists are interested in how people’s behavior is affected by information.
A potentially important aspect is how the information is transmitted. Information
from a credible, first-hand source might be more effective than second-hand informa-
tion. Consider a study that investigates this in the context of political campaigning.
Campaigns often reach out to potential voters in an effort to persuade them to vote
for a particular candidate. People targeted by a campaign might in turn spread the
message to people who were not directly targeted by the campaign. Our interest
in this illustration is to estimate the difference in voting behavior when being di-
rectly targeted by the campaign and when being only indirectly targeted by knowing
someone who is directly targeted.

Consider a sample of two potential voters, who are units in the experiment indexed
by i ∈ {1, 2}. The two voters might be part of a bigger social network, but we restrict
our attention to this small sample in this illustration for simplicity. There are two
experimental conditions: either voter 1 is directly targeted by the campaign and
person 2 is indirectly targeted (through conversations with person 1) or vice versa,
i.e. person 2 is directly targeted and person 1 is indirectly targeted. For each person
i ∈ {1, 2} let ai denote the voting behavior of person i under direct targeting, and let
bi denote voting behavior of the same person when indirectly targeted. The causal
quantity of interest is average contrast in voting behavior between direct and indirect
campaign targeting, τ = 1/2 · (a1 − b1) + 1/2 · (a2 − b2). The experimental design
stipulates that each experimental condition occurs with probability 1/2. In this case,
the Horvitz–Thompson estimator has the distribution

τ̂ =

{
a1 − b2 with probability 1/2,

a2 − b1 with probability 1/2.

Thus, the variance of the estimator is

Var(τ̂) =
1

4
(a2

1 + a2
2 + b2

1 + b2
2) +

1

2
(a1b1 + a2b2 − a1a2 − b1b2 − a1b2 − a2b1).

The heart of the problem is that some terms in the variance expression are never
observed. We never observe a1b1 or a2b2, because a person is never directly and
indirectly targeted by the campaign simultaneously. Similarly, we never observe a1a2

or b1b2, because Person 1 is directly targeted when Person 2 is indirectly targeted, and
vice versa. The unobserved terms prevent us from constructing an unbiased estimator
of the variance unless we make assumptions about the outcomes. The assumptions
we would need to make are strong, and they are often untenable in practice.

An alternative route is to construct a bound for the variance, which allows us to
construct a conservative estimator. A simple bound uses the fact that

Var(τ̂) = E[τ̂ 2]− E[τ̂ ]2 ≤ E[τ̂ 2].
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Hence, the variance is upper bounded by

Var(τ̂) ≤ E
[
τ̂ 2
]

=
1

2
(a2

1 + a2
2 + b2

1 + b2
2)− a1b2 − a2b1.

Note that this bound holds for any values of outcomes, so no assumptions are required
here. Furthermore, the bound is estimable because all terms are observed with some
positive probability. Although, no estimator will be able to precisely estimate the
variance in this example due to the small sample size.

The bound just derived is just one of many possible bounds. A somewhat more
intricate bound uses the fact that

(x− y)2 = x2 − 2xy + y2 ≥ 0,

which means that (x2 + y2)/2 is an upper bound for the product xy for any real-
valued x and y. This is known as the Arithmetic-Geometric (AM-GM) inequality or
Young’s inequality. Applying this inequality to the problematic terms of the variance,
we arrive at

Var(τ̂) ≤ 3

4
(a2

1 + a2
2 + b2

1 + b2
2)− 1

2
(a1b2 + a2b1).

These terms are the same terms as above but with different coefficients. Hence,
they are all observed with some positive probability, and the second bound is also
estimable.

Both of these bounds are valid and estimable, so either can be used to construct
a variance estimator that is conservative in expectation. Indeed, there are infinitely
many variance bounds here, with infinitely many corresponding conservative variance
estimators. The question we ask in this chapter is which of these bounds we should
use. We want a variance estimator that is guaranteed to be conservative, which would
be achieved by any one of the bounds, but we want to avoid excessive conservativeness
if possible.

The choice is simple when choosing between the two bounds in this illustration,
because the first bound is always smaller than the second; that is, the second bound is
inadmissible. More generally, however, the set of admissible bounds will be infinitely
large, and there is no universal ordering among them. We suggest that experimenters
take advantage of background information about the potential outcomes when select-
ing a bound to use to construct a variance estimator. In what follows, we describe
how this can be achieved while ensuring that the resulting estimator is conservative
and estimable no matter if the supplied background information is correct.

3.1.2 Related works

To the best of our knowledge, Neyman (1923) was the first to recognize that vari-
ances of treatment effect estimators are not directly estimable. He showed that the
variance of the difference-in-means estimator under the complete randomization de-
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sign depends on the covariance of unit-level potential outcomes, which cannot be
estimated from the data. Neyman applied the Cauchy–Schwarz inequality followed
by the AM–GM inequality to arrive at an upper bound of the variance that could be
estimated.

Neyman’s approach has been improved and extended in several directions. An
important line of work considers variance estimation under other experimental de-
signs than complete randomization. Early examples include Kempthorne (1955) and
Wilk (1955), who studied variance estimation under various blocked designs. How-
ever, these investigations generally impose structural assumptions on the potential
outcomes, such as constant treatment effects, which limits its applicability. The more
recent literature has derived Neyman-type variance estimators for a large class of de-
signs without such assumptions (see, e.g., Gadbury, 2001; Abadie and Imbens, 2008;
Imai, 2008; Higgins et al., 2015; Fogarty, 2018; Pashley and Miratrix, 2019).

A related strand of the literature has derived Neyman-type variance estimators for
other point estimators than the difference-in-means estimator. For example, Samii
and Aronow (2012) and Aronow and Middleton (2013) investigate variance estima-
tors for the ordinary least square regression estimator and the Horvitz–Thompson
estimator, respectively. To the best of our knowledge, variance estimation for general
estimators under arbitrary designs has not previous been studied.

Another strand of the literature aims to sharpen Neyman’s bound. Robins (1988)
focuses on binary outcomes and derives a variance estimator that extracts all in-
formation about the joint distribution of the potential outcomes contained in the
marginal distributions. Aronow et al. (2014) use Fréchet–Hoeffding-type bounds to
generalize the estimator by Robins (1988) to arbitrary outcome variables. Nutz and
Wang (2020) provide further improvements under the assumption that all unit-level
treatment effects are nonnegative. Menzel and Imbens (2021) provide higher-order
refinements to these bounds using a bootstrap approach. While these bounds can
be useful when experimenters use the difference-in-means estimator under complete
randomization, it is unclear whether and how the results generalize to more complex
estimators and designs.

The strand of the literature closest to our contribution considers variance esti-
mation for arbitrary designs. To the best of our knowledge, the only previous result
here is due to Aronow and Samii (2013, 2017). They describe a method to construct
a bound for the variance of the Horvitz–Thompson estimator when some pair-wise
assignment probabilities are zero. However, as we noted in the previous section,
there are generally an infinite number of admissible variance bound. We here explore
whether there exist better bounds. Indeed, there does—the Aronow–Samii bound is
often inadmissible.
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3.2 Linear Point Estimators and their Variance

3.2.1 Preliminaries

The focus of our study is an experiment consisting of n units indexed by [n] =

{1, . . . , n}. The experimenter randomly assigns treatment zi ∈ {0, 1} to each unit i ∈
[n] and we collect these assignments into the random vector z = (z1, . . . zn) ∈ {0, 1}n.
The distribution of z is the design of the experiment, which is selected by, and thus
known to, the experimenter. Each unit is associated with a vector of d deterministic
covariates xi ∈ Rd, which are also known the experimenter. The matrix produced by
stacking x1, . . . ,xn as rows is denoted X.

Each unit i ∈ [n] has an associated potential outcome function yi : {0, 1}n → R
that specifies the response of unit i under all possible treatment assignments. This
allows the response of unit i to depend not only on its own treatment, but potentially
also on the treatment of other units. In other words, we allow for interference. The
potential outcomes themselves are deterministic and the only randomness in the ob-
served outcomes arises from randomness in the treatment assignment. In particular,
the observed outcome of unit i is yi(z), which is random because it depends on the
treatment assignments. In an abuse of notation, we sometimes use yi to refer to both
the (deterministic) potential outcome function as well as the (random) observed out-
come, formally written as yi(z). The random vector of observed outcomes is denoted
y = (y1, y2, . . . yn).

To model interference in the potential outcomes framework, we will use exposure
mappings as described by Aronow and Samii (2017). In this framework, the exposures
capture the relevant information required to specify the outcomes. More formally,
each unit i ∈ [n] has an exposure mapping di : {0, 1}n → ∆ that maps the treatment
assignment to a finite set of exposures ∆. The assignment vectors mapping to the
same exposure for some unit are considered causally similar or equivalent with respect
to that unit. The number of exposures |∆| is typically considered to be small with
respect to the number of units. For example, in a social network experiment we
may define ∆ = {edirect, eindirect, econtrol} which corresponds to three possible exposure
levels. The exposure mapping for unit i ∈ [n] may be given by

di(z) =


edirect if zi = 1

eindirect if zi = 0 and zj = 1 for some neighbors j of i
econtrol if zi = 0 and zj = 0 for all neighbors j of i

.

Researchers using exposure mappings to model interference often assume the map-
pings are correctly specified, and we will assume the same in this chapter. The
assumption states that the outcomes are completely determined by the exposure re-
ceived by each unit, so that

yi(z) = yi(z
′) for all z, z′ ∈ {0, 1}n such that di(z) = di(z

′).
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In other words, if two assignment vectors produce the same exposure for unit i, then
the outcome of unit i will be the same for these two assignment vectors. This means
that all relevant causal quantities can be understood and defined in terms of the
exposures received by the units. For each unit i ∈ [n], we define the random variable
Di = di(z) as the exposure which that unit receives.

The causal quantities of interest when using exposure mappings are generally the
average contrast between two exposures for all units. Given two exposures a, b ∈ ∆,
we consider the estimand

τ(a, b) =
1

n

n∑
i=1

[
yi(a)− yi(b)

]
,

where we have overloaded notation by writing yi(d) to denote the outcome of unit i
under exposure d ∈ ∆. This class of estimand includes many commonly studied causal
quantities, including total, direct and indirect treatment effects. In the remainder of
the chapter, we write τ(a, b) simply as τ for notational convenience. Although we
focus on estimands that are unweighted averages of contrasts of potential outcomes
in this chapter, the results easily generalize to causal estimands which are arbitrary
linear functions of the potential outcomes.

To recover the conventional no-interference setting, one uses exposure mappings
that set each unit’s exposure to its own treatment, di(z) = zi, which gives a binary
set of exposures, ∆ = {0, 1}. The conventional average treatment effect is then
produced by setting a = 1 and b = 0 in the contrast of the estimand. Therefore,
the investigation in this chapter is applicable to the no-interference setting without
modification.

3.2.2 Linear treatment effect estimators

We consider the class of linear estimators. Estimators in this class can be written as
random linear functions of the observed outcomes:

τ̂ =
n∑
i=1

wiyi, (3.1)

where the coefficients wi may depend arbitrarily on treatment assignment z and
covariates X. Thus, the coefficients wi can be random, but they cannot depend on
the outcomes. While the estimators in this class are linear functions, they do not
require or implicitly impose any linearity assumption on the conditional expectation
functions of the outcomes given the covariates; that is, we can use a linear estimator
without assuming a linear regression model.

This class includes most estimators commonly used by experimenters to estimate
exposure effects. As the following examples demonstrate, the class includes all point
estimators discussed by Aronow and Samii (2017), and many others.
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1. The Horvitz–Thompson estimator (Horvitz and Thompson, 1952) uses inverse
probability weighting to account for non-uniform assignment probabilities. We
can write this estimator in the form of Eq. (3.1) by using the coefficients

wi =
1[Di = a]

nPr(Di = a)
− 1[Di = b]

nPr(Di = b)
.

2. The difference-in-means estimator (Imbens and Rubin, 2015) contrasts the sam-
ple means between the two groups which received the exposures of interest. We
can write this estimator in the linear form by using the coefficients

wi =
1[Di = a]∑n
j=1 1[Dj = a]

− 1[Di = b]∑n
j=1 1[Dj = b]

.

3. The Hájek estimator (Hájek, 1971) is a generalization of the difference-in-means
estimator that accommodates non-uniform assignment probabilities. We can
write this estimator in the linear form by using the coefficients

wi =

(
1[Di = a]

Pr(Di = a)

/ n∑
j=1

1[Dj = a]

Pr(Dj = a)

)
−

(
1[Di = b]

Pr(Di = b)

/ n∑
j=1

1[Dj = b]

Pr(Dj = b)

)
.

4. The conventional OLS regression estimator of the average treatment effect (see,
e.g., Duflo et al., 2007) is obtained by using the coefficients

wi = e
ᵀ
2

(
Q

ᵀ
Q
)−1
Q

ᵀ
ei,

where ei is the ith standard basis vector of appropriate dimension, and Q =[
1, z,X

]
. This estimator has been shown to perform poorly in some situ-

ations. Lin (2013) describes a modified OLS regression estimator that ad-
dresses the issue. This estimator has the same form but with the matrix
Q =

[
1, z,Xdm,X int

]
, where the matrix Xdm = X − n−111

ᵀ
X is the de-

meaned covariate matrix, and X int = z1
ᵀ ◦ Xdm is the Hadamard product

between the treatment vector and the demeaned covariate matrix.

5. The Generalized Regression Estimator (Cassel et al., 1976), which sometimes is
called the Augmented Inverse Propensity Weighted Estimator, allows for both
covariate adjustment and non-uniform assignment probabilities. The estimator
is written as

τ̂ =
1

n

n∑
i=1

[
x
ᵀ
i

(
β̂a − β̂b

)
+

1[Di = a]
(
yi − xᵀ

i β̂a
)

Pr(Di = a)
−

1[Dj = b]
(
yi − xᵀ

i β̂b
)

Pr(Dj = b)

]
,

where the linear functions β̂d are chosen to minimize
∑n

i=1 1[Di = d](yi−xᵀ
iβd)

2.
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We can write β̂d in closed form as
(
X

ᵀ
dXd

)−1
X

ᵀ
dy, where the ith row of Xd

is equal to xi if Di = d and otherwise equal to zero. This means that we can
write the estimator in the linear form by using the coefficients

wi =
1[Di = a]

nPr(Di = a)
− 1[Di = b]

nPr(Di = b)
+

1

n

n∑
j=1

Q
ᵀ
jei,

where ei is the ith standard basis vector of dimension n, and

Q
ᵀ
j =

(
1− 1[Dj = a]

Pr(Dj = a)

)
x
ᵀ
j

(
X

ᵀ
aXa

)−1
X

ᵀ
a−
(

1− 1[Dj = b]

Pr(Dj = b)

)
x
ᵀ
j

(
X

ᵀ
bXb

)−1
X

ᵀ
b .

Of course, the class of linear estimators contains many more members than these
examples. In the remainder of the chapter, we will focus on a generic linear estimator
rather than any particular estimator among these examples. As they all belong to
the studied class, the results apply to all of them.

3.2.3 The variance of linear estimators

For expositional reasons, we restrict our attention in the main part of the chapter to
linear estimators that depend only on observed potential outcomes corresponding to
the two exposures of interest, a and b. All estimators listed in the previous section are
of this type, but the class of linear estimators is larger than that. The extension to
the full class is straightforward, but heavy on notation, so we relegate this discussion
to Appendix B.1.

Linear estimators of this type can be written as

τ̂ =
n∑
i=1

1[Di = a]wiyi(a) +
n∑
i=1

1[Di = b]wiyi(b).

To make this expression more manageable, we extend the index set to P = {1, . . . 2n},
and for k ∈ P , we define two variables:

vk =

{
1[Dk = a]wk if k ≤ n,

1[Dk−n = b]wk−n if k > n,
and θk =

{
yk(a) if k ≤ n,

yk−n(b) if k > n.

Collecting these variables in vectors, v = (v1, . . . v2n) and θ = (θ1, . . . θ2n), we can
write the estimator as

τ̂ =
2n∑
k=1

vkθk = v
ᵀ
θ.

The advantage of writing the estimator in this form is that we have isolated the
potential outcomes in θ, which is nonrandom, so all randomness is concentrated in
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the coefficient vector v. This makes the derivation of the variance of the estimator
straightforward.

Lemma 3.1. The variance of a linear estimator τ̂ = vᵀθ is

Var(τ̂) = θ
ᵀ
Aθ,

where A = Cov(v) is the covariance matrix of the coefficient vector v.

Proof. Because θ is nonrandom, Var(τ̂) = Var
(
vᵀθ

)
= θ

ᵀ
Cov(v)θ.

The lemma is useful because A = Cov(v) does not depend on the potential
outcomes, so it is known, at least in principle. Furthermore, becauseA is a covariance
matrix, it is positive semidefinite. This means that the variance is a known positive
semidefinite quadratic form of the potential outcome vector, which in turn makes it
conducive to analysis.

A possible complication here is that the covariance matrix may be hard to compute
for some estimators and designs. If that turns out to be the case, experimenters can
then use a Monte Carlo approach to estimate the matrix (Fattorini, 2006). This
generally does not cause troubles because experimenters can run the simulation until
the matrix is known to desired precision. But to ease the exposition, we will proceed
under the assumption that A is known.

3.2.4 The variance of linear estimators is not estimable

The task of estimating the variance of a linear estimator has now been reduced to
the task of estimating the corresponding (known) quadratic form in the (unknown)
potential outcome vector θ. The central concern here is that some quadratic forms
cannot be estimated well. In particular, some pairs of potential outcomes may never,
or only very rarely, be observed at the same time, and this can make the task difficult
or impossible.

The experimental design determines which exposures are simultaneously realiz-
able, which in turn determines which outcomes are simultaneously observable. Con-
sider the random subset S ⊂ P given by

S = {i : Di = a} ∪ {i+ n : Di = b},

collecting the indices of the observed elements of θ. If Pr(k, ` ∈ S) = 0 for some pair
`, k ∈ P , then the corresponding product θkθ` is never observed. These pairs will be
central to our discussion, so we let

Ω =
{

(`, k) : Pr(`, k ∈ S) = 0
}

be the set of all pairs of the relevant contrasted potential outcomes that are never
simultaneously observed. As formalized in the following definition and proposition,
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estimable quadratic forms are those that are compatible with this pattern of observ-
ability.

Definition 3.2. An arbitrary quadratic form θ
ᵀ
Aθ =

∑
`∈P
∑

k∈P a`,kθkθ` is design
compatible with respect to a design and its set of unobserved pairs Ω if the probability
of simultaneously observing θi and θj is zero only when the corresponding element in
A is zero:

∀k, ` ∈ P, (k, `) ∈ Ω =⇒ ak` = 0,

where ak` is the element in the kth row and `th column of A.

Proposition 3.3. An unbiased estimator exists for a quadratic form if and only if it
is design compatible.

A seemingly simple way to make quadratic forms design compatible is to use a
design for which Pr(k, ` ∈ S) is not zero for any pair k, ` ∈ P . However, such designs
are not possible because a unit cannot simultaneously be assigned to the two exposures
to be contrasted. That is, we always have Pr(k, ` ∈ S) = 0 whenever k and ` refer
to two different potential outcomes for the same unit. This lack of observability is
inescapable, prompting Holland (1986) to call this the fundamental problem of causal
inference.

A possible remedy is to impose structural assumptions on the potential outcomes.
Such assumptions allow us to extrapolate from observed to unobserved outcomes,
which may allow for unbiased or consistent variance estimation. For example, Neyman
(1923) notes that if the treatment effects are constant between units, the variance is
estimable. However, these assumptions are generally strong, and rarely tenable in
practice.

The variance estimation problem is exacerbated by interference and complex ex-
perimental designs. In interference settings, the structure of the exposure mapping
often prevents certain pairs of exposures between different units to be inherently si-
multaneously unrealizable. For example, when units interact with each other in a
network, all neighbors to a unit that is treated will necessarily be indirectly exposed
to treatment. Therefore, it is impossible for two neighboring units to simultaneously
receive the direct treatment and pure control exposures. In no-interference settings,
some designs set Pr(k, ` ∈ S) to zero, or a small value, even for pairs k, ` ∈ P that are
in principle simultaneously observable. This could either be in an effort to improve
the efficiency of the point estimator, such as in a matched-pair design, or because the
design is forced on the experimenter by external factors.

3.2.5 Conservative variance bounds

After realizing that the variance of linear estimators cannot be estimated well, ex-
perimenters often opt for a conservative variance estimator. That is, they accept
an estimator that systematically overestimates the variance, providing a pessimistic
assessment of the precision of the point estimator. An inference procedure, such as
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a confidence interval, based on a conservative variance estimator errs on the side of
caution, in the sense that it motivates firm conclusions only under disproportionately
strong evidence in favor of the conclusion.

We may understand such conservative variance estimators as estimators of an
upper bound on the variance. We say that a function VB : R2n → R that satisfies
VB(θ) ≥ θᵀAθ = Var(τ̂) for all potential outcomes θ ∈ R2n is a variance bound. If we
construct the function so it complies with the structure of simultaneous observability
of the potential outcomes, we can construct an estimator for VB(θ) corresponding to
the true potential outcome vector θ, thereby yielding a conservative estimator of the
variance.

The focus in this chapter is when the upper bound itself is a positive semidefinite
quadratic form:

VB(θ) = θ
ᵀ
Bθ =

2n∑
k=1

2n∑
`=1

bk`θkθ`,

where B is a 2n-by-2n positive semidefinite matrix, and bk` is the element in the kth
row and `th column of B. Throughout the remainder of the chapter, we will use B
to refer to both the coefficient matrix and the variance bound function VB(θ).

To serve as a basis for a conservative estimator, we require the variance bounds to
be both conservative and design compatible. This imposes two types of constraints
on the coefficient matrix B. To satisfy design conservativeness, B must be larger
than A in the sense that θᵀAθ ≤ θ

ᵀ
Bθ for all vectors θ. This is precisely the

Loewner partial ordering on symmetric matrices where A � B if B −A is positive
semidefinite. To satisfy design compatibility, B must be such that bk` = 0 for all
pairs (k, `) ∈ Ω. We refer to symmetric matrices that satisfy these two conditions as
valid variance bounds.

Definition 3.4. A symmetric matrix B is a valid variance bound for A if it is larger
than A in the Loewner order and design compatible under the current design. Let B
collect all valid variance bounds:

B =
{
B : A � B and bk` = 0 for all (k, `) ∈ Ω

}
.

An alternative, but equivalent, way to characterize the set of variance bounds is
to use a slack matrix S. A variance bound is constructed by adding the slack matrix
to the variance matrix: B = A+ S. The resulting variance bound is conservative if
and only if S = B − A is positive semidefinite. Thus, the slack captures what we
add to the variance matrix in order to attain design compatibility. The set of slack
matrices that produces valid variance bounds is

S = {S : S � 0 and sk` = −ak` for all (k, `) ∈ Ω},

where sk` is the element in the kth row and `th column of S. We can reproduce the
set of valid variance bounds as B = {A+S : S ∈ S}. While the two representations
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are equivalent, it is often more convenient to work with slack matrices.

3.2.6 Examples from the previous literature

We can use the representation outlined in this section to understand existing variance
estimators. Our first example is the variance estimator described by Neyman (1923)
for the difference-in-means estimator under a complete randomization design under
no interference. A complete randomization design selects uniformly at random a
fixed number of the units, typically half of the total number of units, to be assigned
treatment. Because there is no interference, the relevant exposures are a = 1 and
b = 0, and the estimand is the conventional average treatment effect.

Neyman (1923) showed that the variance in this setting is

Var(τ̂) =
1

n− 1

[
1

n

n∑
i=1

(
yi(1)− 1

n

n∑
j=1

yj(1)

)2

+
1

n

n∑
i=1

(
yi(0)− 1

n

n∑
j=1

yj(0)

)2

+2ρ2

]
,

where ρ2 in the third term is

ρ2 =
1

n

n∑
i=1

(
yi(1)− 1

n

n∑
j=1

yj(1)

)(
yi(0)− 1

n

n∑
j=1

yj(0)

)
.

The first two terms are the population variances of the two potential outcomes, and
the third term is their covariance. It is the covariance that is not estimable. Neyman’s
solution is to use the Cauchy–Schwarz inequality followed by the AM-GM inequality
on ρ2 to obtain the upper bound

Var(τ̂) ≤ 2

n− 1

[
1

n

n∑
i=1

(
yi(1)− 1

n

n∑
j=1

yj(1)

)2

+
1

n

n∑
i=1

(
yi(0)− 1

n

n∑
j=1

yj(0)

)2
]
.

This upper bound can be estimated by the corresponding sample variances. Imbens
and Rubin (2015) provide a more thorough treatment of this variance estimator.

We now show how the Neyman bound can be written using the framework we have
described in this section. Using the linear coefficients corresponding to the difference-
in-menas estimator, as discussed in Section 3.2.2, the variance of the estimator can be
written Var(τ̂) = θ

ᵀ
Aθ, where the covariance matrix of the linear coefficient vector

is

A = Cov(v) =
1

n(n− 1)

[
H H

H H

]
where H = I − 11

ᵀ
/n,

and the potential outcome vector is θ =
(
y1(1), . . . yn(1), y1(0), . . . yn(0)

)
.

The matrix A is not design compatible because the diagonal elements in the
off-diagonal blocks are non-zero, but the corresponding pairs of potential outcomes
are never simultaneously observed. For example, (1, n + 1) ∈ Ω, so the product
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θ1θn+1 = y1(1)y1(0) is never observed, but entry in row 1 and column n + 1 in A is
non-zero. To address this, the Neyman estimator implicitly uses the slack matrix

S =
1

n(n− 1)

[
H −H
−H H

]
, yielding the variance bound B =

2

n(n− 1)

[
H 0

0 H

]
.

This bound is a valid because A � B, and bk` = 0 for all (k, `) ∈ Ω.
Our second example is the class of variance estimators described by Aronow

and Samii (2013, 2017). The authors consider variance estimation for the Horvitz–
Thompson point estimator under arbitrary experimental designs, and they describe
a bound based on Young’s inequality for products. The most straightforward version
of Young’s inequality states that 2ab ≤ a2 + b2 for any two real numbers a and b. It
is possible to use this inequality to construct variance estimators for all linear point
estimators.

The representation of the estimator provided by Aronow & Samii is somewhat
unwieldy, so we refer interested readers to their papers. Instead, we provide the
quadratic form representation of their variance estimator using the framework de-
scribed in this section. For a variance

Var(τ̂) = θ
ᵀ
Aθ =

2n∑
k=1

2n∑
`=1

ak`θkθ`,

with terms (k, `) ∈ Ω containing unobservable products θkθ`, Aronow & Samii apply
Young’s inequality on each term separately:

ak`θkθ` ≤
|ak`|

2

(
θ2
k + θ2

`

)
.

We can write these inequalities as slack matrix. Let M k` be a 2n × 2n matrix
with zeros entries except in the (k, `)th block, which instead is given by

k `( )
k |ak`| −ak`
` −ak` |ak`|

.

The variance bound B = A+ S underlying the Aronow & Samii variance estimator
is given by the slack matrix

S =
1

2

∑
(k,`)∈Ω

M k`.

This bound is design compatible because sk` = −ak` by construction for all (k, `) ∈ Ω.
Furthermore, because all matricesM k` for (k, `) ∈ Ω are positive semidefinite, so will
their sum be. Hence, S is positive semidefinite, and the bound is conservative.
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3.3 Constructing Variance Bounds

3.3.1 Admissibility

Some valid variance boundsB ∈ B will introduce slack beyond what is required for de-
sign compatibility, meaning that they are unnecessarily conservative. Experimenters
will typically want to use a variance bound that introduces as little conservativeness,
or slack, as possible. The amount of slack introduced will depend on the potential
outcomes, so there is no universal ordering of the bounds with respect to conserva-
tiveness. This means that there exists no universally best bound. But some bounds
can be ruled out because they introduce more slack than some other bound no mat-
ter what the potential outcomes might be. The following notion of inadmissibility
characterizes such bounds.

Definition 3.5. A variance bound B ∈ B is inadmissible if there exists another
bound B̃ ∈ B such that θᵀB̃θ ≤ θᵀBθ for all θ ∈ R2n and θᵀB̃θ < θ

ᵀ
Bθ for at

least one θ ∈ R2n. Equivalently, B is inadmissible if there exists another bound B̃
such that the difference B − B̃ is positive semidefinite and not zero. A variance
bound that is not inadmissible is said to be admissible.

The set of admissible bounds are the minimal elements of B with respect to the
Loewner order. Because the Loewner order is a partial order, there will generally
be many minimal elements, mirroring the fact that no universally best bound exists.
Moreover, there will generally be infinitely many admissible variance bounds. The
focus in this section is how one should pick one of these admissible bounds to use in
the construction of a variance estimator.

Proposition 3.6. The Aronow–Samii bound is inadmissible in general experimental
settings.

Proof. A simple example suffices to prove the proposition. Indeed, the illustration
in Section 3.1.1 proves the proposition. Observe that the variance is encoded by the
matrix

A =
1

4


1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

 .
The two bounds in the illustration are

B1 =
1

4


2 0 0 −2

0 2 −2 0

0 −2 2 0

−2 0 0 2

 and B2 =
1

4


3 0 0 −1

0 3 −1 0

0 −1 3 0

−1 0 0 3

 ,
of which B2 is the Aronow–Samii bound. Both these bounds are conservative and

64



design compatible, so they valid according to Definition 3.4. However, the difference

B2 −B1 =
1

4


1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1


is positive semidefinite, and not zero, so Definition 3.5 tells us thatB2 is inadmissible.

It is possible to construct more involved experimental settings (e.g. larger sam-
ples, more intricate designs) where the Aronow–Samii bound is inadmissible, but
we omit those examples in the interest of space. There are experimental settings
where the Aronow–Samii bound is admissible. In Appendix B.3, we show that the
Aronow–Samii bound is admissible in the no-interference setting when all pairs of as-
signments are observed with nonzero probability. Even so, the Aronow–Samii bound
will generally be inadmissible under interference or complex designs.

3.3.2 Variance bound programs

There is currently no method for producing an admissible variance bound for general
exposure mappings and designs. We propose a computational approach, where a
variance bound from B is selected using an optimization formulation. For some real-
valued function g on symmetric matrices, we aim to find a slack matrix S ∈ S that
minimizes g. Once an optimal S is obtained, we construct the variance bound as
B = A + S. Effectively, the choice of the objective function g implicitly selects the
variance bound. We refer to this procedure as OPT-VB, which is formally described
in Algorithm 2.

Algorithm 2: OPT-VB
Input: Objective function g

1 Compute a slack matrix S by solving the optimization program

S∗ ∈ arg min
S∈S

g(S). (OPT)

2 Construct variance bound as B ← A+ S.
3 return variance bound B.

The key aspect of OPT-VB is selecting the objective function g. The ideal
objective function when our goal is to minimize the conservativeness is g(S) = θ

ᵀ
Sθ

for the true potential outcomes. But such an objective requires exact knowledge of the
potential outcomes, making it infeasible. Our suggestion is instead to have g encode
preferences of the experimenter concerning trade-offs associated with the bound, and
any background knowledge they may have.
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Independently of preferences and background knowledge, however, we always want
to pick a bound that is admissible. The following definition and proposition provide
conditions on the objective function g that ensure that the variance bound produced
by OPT-VB is admissible.

Definition 3.7. A real-valued function f on symmetric matrices is strictly monotone
if f(A) < f(A+ S) for all symmetric A and nonzero positive semidefinite S.

Theorem 3.8. If g is strictly monotone, then OPT-VB returns a variance bound
that is conservative, design compatible and admissible.

Using Theorem 3.8, we can verify that a variance bound obtained by OPT-VB
is admissible by showing that the objective is strictly monotone. Indeed, unless
otherwise noted, all objective functions discussed in this chapter are strictly monotone
according to Definition 3.7, so Theorem 3.8 guarantees admissibility of the resulting
bound. The proof of Theorem 3.8 appears in Appendix B.2.2.

Our definition of strict monotonicity differs from the conventional definition based
on the strict Loewner order. This definition states that a strictly monotone function
f satisfies f(A) < f(B) whenever A ≺ B. The conventional definition, though
well-motivated in many applications, does not align with our notion of admissibility,
motivating the variation we present in Definition 3.7.

Theorem 3.8 motivates us to pick an objective that is strictly monotone no matter
our preferences and background knowledge. Another concern that is universal is the
computational tractability of solving the optimization problem underlying OPT-VB.
As a rule of thumb, optimization is tractable if it is a convex program (Rockafellar,
1993). The set of slack matrices S is convex. Therefore, the optimization underlying
OPT-VB is convex if g is selected to be a convex function. All objective functions
discussed in this chapter are convex, so they admit efficient algorithms for finding an
optimal solution, up to desired tolerance. We will not review convex programming
in this chapter, but a wide variety of general purpose solvers are available (see, e.g.,
Dunning et al., 2017; Udell et al., 2014). Boyd and Vandenberghe (2004) provides an
introduction to the theory of convex programming.

3.3.3 Norm objectives

We will first consider the situation in which the experimenter has little or no back-
ground knowledge about the potential outcomes. In this setting, the objective func-
tion encodes the experimenter’s risk preference concerning the bound. In particular,
at heart of the problem is a trade-off between average performance and worst-case
performance of variance bounds. One may select the bound to not introduce much
conservativeness for most potential outcomes, in a sense that will be made formal
shortly, but then the bound can be excessively conservative for some potential out-
comes. Conversely, one may select the bound to never be excessively conservative,
but then it will be more conservative on average. A risk tolerant experimenter would
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prefer the first type of bound, while a risk averse experimenter would prefer the second
type.

We will use the family of Schatten p-norms for matrices to make this idea precise.
Informally, our goal is to select a variance bound that is not excessively conservative as
a function of the potential outcomes. A way to measure the magnitude of a quadratic
form is by a matrix norm of its coefficient matrix. Thus, to make the variance bound
small, we select a coefficient matrix B. We use Schatten norms because they allow
us to capture the risk trade-off.

To understand the Schatten norm, we must consider the spectral decomposition
of the coefficient matrices B ∈ B of all valid bounds. This decomposition allows us
to write the variance bound as

VB(θ) = θ
ᵀ
Bθ = ‖θ‖2

2n∑
k=1

wkλk,

where wk = 〈ηk,θ〉2/‖θ‖2 captures the alignment of the potential outcome vector to
the kth eigenvector ηk of B, and λk is the corresponding kth eigenvalue. Because
B is positive semidefinite, all eigenvalues are non-negative. By construction, the
coefficients wk are non-negative and sum to one, so they act as weights in a convex
combination of the eigenvalues. That is, the conservativeness of the variance bound
is determined by the eigenvalues and the alignment of the potential outcomes to the
eigenvectors of B. Thus, if we make the eigenvalues of the variance bound matrix B
small, we ensure that the bound is not excessively conservative.

The Schatten norms are different ways of measuring the magnitude of the eigen-
values. Formally, a Schatten p-norm of B is the usual p-norm applied to the vector
of singular values of B, which in our case coincide with the eigenvalues:

‖B‖p =

( 2n∑
k=1

|λk|p
)1/p

.

The Schatten p-norm thus acts in the same way as vector p-norm: as p becomes larger,
the norm becomes disporportionally affected by large eigenvalues. If p is small, a few
eigenvalues are allowed to be large if it means that many other eigenvalues can be
small. But, if p is large, the focus is mainly on making the largest eigenvalues small,
at the cost of increasing smaller eigenvalues. Therefore, a risk averse experimenter
would want to use a Schatten p-norm with a large p, ensuring that no eigenvalue is
much larger than the others. A risk tolerant experimenter would instead prefer a
Schatten p-norm with a smaller p, as this will ensure that the sum of eigenvalues is
not too large. The following proposition shows that the resulting bound is admissible
no matter the choice of p.

Proposition 3.9. For all p ∈ [1,∞), the Schatten p-norm objective g(S) = ‖A+S‖p
is strictly monotone, ensuring that the variance bound produced by OPT-VB using g
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is admissible.

The Schatten p-norm coincides with some more familiar matrix norms for particu-
lar values of p. If we set p = 1, the Schatten p-norm is simply the sum of the absolute
value of the eigenvalues. This coindices with the nuclear norm, which also is called
the trace norm, commonly defined as ‖B‖1 = tr(

√
B

ᵀ
B) = tr(B), where the last

equality holds for symmetric and positive semidefinite B. Using this norm provides a
bound with the best average performance, in the sense that it puts uniform weight on
all eigenvalues no matter their magnitude. An experimenter with complete tolerance
for risk would pick this norm to use for the objective function.

At the other extreme, if we let p → ∞, we obtain the operator norm induced
by the 2-norm. This norm is more commonly defined as ‖B‖∞ = max‖θ‖2=1‖Bθ‖2.
When B is positive semidefinite, as in our case, the norm is equal to the maximum
eigenvalue of B. An experimenter who is maximally risk adverse would pick this
norm to use for the objective function, as it would trade-off any amount of average
conservativeness for even a minimal reduction is worst-case conservativeness. The
spectral norm is not strictly monotone according to Definition 3.7, so an arbitrary
minimizer of an objective function using this norm is not guaranteed to be admissi-
ble. However, experimenters are rarely so risk averse that they would use the spectral
norm, and objectives based on the Schatten p-norm for any p <∞ is strictly mono-
tone. Nevertheless, we sketch an argument in Section 3.3.6 which shows that there
always exists an admissible minimizer of the spectral norm.

The final special case we consider is when p = 2. This recovers the Frobenius
norm, which more commonly is defined as ‖B‖2 =

√
tr(BB

ᵀ
). As made clear by

the connection to the Schatten norm, the Frobenius norm can also be interpreted
as the Euclidean norm of the eigenvalues. Hence, the Frobenius norm provides an
intermediate point in the risk trade-off; it penalizes large eigenvalues disproportion-
ately much, making sure that no eigenvalue gets very large, but it does not ignore
the smaller eigenvalues completely. We believe many experimenters will find that the
Frobenius norm is an appropriate choice in many setting. But, of course, the choice
should ultimately be governed by each experimenter’s risk preference in the particular
application.

3.3.4 Targeted Linear Objectives

The class of norm objectives can encode experimenters’ risk preferences, but they
cannot encode background knowledge they might have about the potential outcomes.
We describe a class of targeted objective functions to fill this role. The choice of
a particular objective function from this class will reflect the experimenter’s prior
substantive knowledge. An experimenter’s prior knowledge about the potential out-
comes need not be correct in any way to ensure the validity of the resulting variance
bound, but if the experimenter is able to provide accurate information about the
potential outcomes, the bound will be less conservative. This idea is related to the
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model-assisted tradition used in design-based survey sampling (Särndal et al., 1992).
The class of targeted linear objectives takes the form

g(S) = 〈S,W 〉,

where S is the slack matrix to be evaluated, W is a targeting matrix of the same
dimensions, and 〈·, ·〉 denotes the trace inner product on matrices, defined formally
as

〈S,W 〉 = tr(SW ) =
∑
i,j

si,jwi,j,

where si,j and wi,j are elements of S and W , respectively. As we discuss to some
detail in the next section,W is used to target particular potential outcomes, perhaps
motivated by prior substantive knowledge. Importantly, all objective functions in this
class are linear in the coefficients of the slack matrix, so the optimization problem
underlying OPT-VB is a semidefinite program when used by these targeted linear
objectives, ensuring computational tractability.

By construction, the bound returned by OPT-VB using a targeted linear objective
will be valid. What makes the class of targeted linear objectives stand out compared
to the norm objectives is a type of completeness result. The class of targeted linear
objectives characterizes the set of all admissible variance bounds.

Theorem 3.10. A variance bound B is admissible if and only if can be obtained
from OPT-VB using the objective function g(S) = 〈S,W 〉 for some positive definite
targeting matrix W .

The proof that every bound returned by OPT-VB using a positive definite target-
ing matrix is admissible proceeds by showing that every targeted linear objective is
strictly monotone and then appeals to Theorem 3.8. The proof of the opposite direc-
tion, that every admissible bound can be obtained as a solution OPT-VB using some
targeted linear objective is more involved and appeals to the separating hyperplane
theorem from convex analysis.

Theorem 3.10 has several implications. First, it shows that we always obtain an
admissible when we use a targeted linear objective with a positive definite targeting
matrix. Second, it allows us to re-interpret other procedures for constructing variance
bounds by showing what matrix they implicitly target, which by extension shows what
potential outcomes they implicitly targets. We explore this in Appendix B.3, where
we show that the Aronow–Samii bound may be obtained for certain designs in the
no-interference setting by using a diagonal targeting matrixW . However, it might be
challenging to derive the targeting matrix for a given admissible variance bound and
so this type of re-interpretation is possible only when the targeting matrix is known
beforehand.
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3.3.5 Choosing targeting matrices

There are many ways to construct the targeting matrix W to use with a targeted
linear objective. It is beyond the scope of this paper to fully investigate all possible
approaches, but we give some suggestions here.

We begin with an example to illustrate the underlying idea. Recall that the value
of the variance bound using coefficients B = A+ S is

VB(θ) = θ
ᵀ
Bθ = θ

ᵀ
Aθ + θ

ᵀ
Sθ.

On the right hand side, the first term is the true variance, so it does not depend on
the bound. The second term is the excess conservativeness introduced to make the
bound design compatible, so it does depend on the bound, as shown by the inclusion
of the slack matrix. Suppose that the experimenter’s prior substantive knowledge
suggests, perhaps incorrectly, that the potential outcomes are close to some vector
v ∈ R2n. If v in fact is the true potential outcomes θ, this second term is known, so it
can be used directly to select the bound. That is, the experimenter is here motivated
to use the objective function g(S) = vᵀSv.

If v is the true potential outcomes, the variance bound obtained using g(S) =

vᵀSv as objective has the minimal amount of slack required for design compatibility.
If v is similar but not exactly the same as the true potential outcomes, the bound
will often perform well, provided that the slack matrix is sufficiently well behaved
to the extent that the resulting quadratic form is sufficiently smooth. If v is very
different from the true potential outcomes, the bound is still valid, but it could be
excessively conservative. However, importantly for our purposes, this is a targeted
linear objective with targeting matrix W = vvᵀ, because vᵀSv can be written as
〈S,vvᵀ〉.

It is rare that experimenters have so precise background knowledge so they can
produce a single vector v of potential outcomes to target. And even if they could,
it would generally not be advisable to do so. The matrix W = vvᵀ will not be full
rank, so it is not positive definite. This means that the produced bound may be
inadmissible, and it could be excessively conservative if the targeted vector be very
different from the true potential outcomes. To address this, we will explore targeting
several potential outcome vectors simultaneously in the rest of this section.

Consider a situation where the experimenter suspect that the true potential out-
comes are similar to at least one vector in a collection of m vectors: v1, . . . ,vm. A
natural objective function here is

g(S) =
m∑
i=1

qiv
ᵀ
iSvi,

where qi ≥ 0 is some weight of the ith vector vi, indicating its importance or relevance.
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This is also a targeted linear objective, corresponding to the targeting matrix

W =
m∑
i=1

qiviv
ᵀ
i .

If the true potential outcomes are similar to one or more vectors in v1, . . . ,vm, the
produced bound can be expected to perform well. Including many vectors in W
will make the targeting less sharp, potentially making the bound more conservative
even if the true potential outcome is similar to one of the targeted vectors. While
this suggests that fewer vectors should be targeted, experimenters should generally
be motivated to include many vectors. As noted above, it is generally advisable to
ensure that W , and that requires that there are at least 2n linearly independent
vectors that are targeted, but they need not be targeted to the same degree. A
simple way to achieve this is to add a scaled identity matrix to a sum of a handful
of vectors. That is, for some m much smaller than 2n and some small γ > 0, the
following objective is positive definite:

W =
m∑
i=1

qiviv
ᵀ
i + γI.

A convenient and more general way to express these weighted averages of potential
outcome vectors is as a generative model. That is, we would consider θ as a random
variable drawn from some distribution. To replicate the objective with m vectors
v1, . . . ,vm, the random variable θ would take the value vi with probability qi/

∑m
i qi.

The targeting matrix is then produced by taking the expectation of the outer product
of the random variable: W = Eθ[θθ

ᵀ
]. We use the subscript Eθ[·] to indicate that

the expectation is taken over the imagined distribution of θ, rather than the true
randomization distribution induced by the experimental design, as in the rest of
the paper. Seen from this perspective, the targeted linear objective minimizes the
expected variance bound:

Eθ[VB(θ)] =
〈
B,Eθ[θθ

ᵀ
]
〉

= 〈A,W 〉+ 〈S,W 〉,

where as above, only
〈
S,W

〉
depends on the choice of the bound.

It should be emphasized here that the interpretation of θ as a random variable
is simply a convenient way to express large collections of potential outcome vectors.
It is not assumed nor required for any of our results that whatever distribution ex-
perimenters choose to use here accurately reflect how the potential outcome actually
was generated; the resulting bound is always valid, and it is admissible provided
that Eθ[θθ

ᵀ
] is positive definite. However, the bound will be less conservative if the

distribution is a good approximation to the true potential outcomes.
One advantage with expressing the targeting matrix as Eθ[θθ

ᵀ
] for some imagined

distribution is that practitioners are often more comfortable expressing background
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knowledge they might have in this form rather than explicit collections of vectors.
One example uses covariates to inform the choice of the targeting matrix.

Consider a situation where the experimenter believes the potential outcomes can
be well-approximated by a linear function of the covariates. That is, we can write the
true potential outcomes as

θ =

[
X 0

0 X

] [
βa
βb

]
+

[
εa
εb

]
,

for some small vectors εa and εb. We write the linear function in this form because we
do not want to use the same linear function to approximate both types of potential
outcomes that are stacked in θ. The matrix X is observed and fixed, but we can
represent our partial ignorance about (βa,βb, εa, εb) as a distribution. There are many
ways of doing this, including using pilot or other related studies. For illustration here,
we will consider all them as normally distributed. In that case, the corresponding
targeting matrix becomes

W = Eθ[θθ
ᵀ
] =

[
XX

ᵀ
+ σ2I 0

0 XX
ᵀ

+ σ2I

]
,

where σ2 denotes the relative variance of an element in the coefficient vectors βd and
an element in εd. This objective is positive definite for all σ > 0.

More intricate generative working models may be used to construct more elaborate
targeting matrices. One may choose to work with more sophisticated generative
working models, such as those based on the underlying exposure mapping in a social
network experiment (Basse et al., 2016; Toulis and Kao, 2013).

3.3.6 Composite Objectives

There are situations where experimenters want a combination of the properties offered
by the objective functions discussed in this section. Using the fact that monotonicity
is maintained under positive combinations, the following proposition shows that any
combination of elementary objectives can be used with OPT-VB.

Proposition 3.11. If a set of m functions g1, . . . , gm are monotone and at least
one of the functions are strictly monotone, then for any set of positive coefficients
γ1, . . . , γm, the function gc =

∑m
i=1 γigi is strictly monotone. Thus, OPT-VB returns

a variance bound that is conservative, design compatible and admissible when called
with the composite objective gc.

One example where a composite objective would be useful is when an experimenter
who has detailed background knowledge still wants to control the worst-case conser-
vativeness of the bound. As described in Sections 3.3.4 and 3.3.5, the experimenter
would encode their knowledge in a targeting matrix W to be used with a targeted
linear objective. But the experimenter might worry that their perceived knowledge
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is inaccurate, in which case the produced bound risks being excessively conservative,
which especially is the case if W is not full rank. To address this, the experimenter
could use a composite objective that includes the operator norm, as discussed in Sec-
tion 3.3.3. Recall that the operator norm captures the worst-case conservativeness of
the bound. For some coefficient γ, deciding the relative focus between targeting and
the worst-case outcome, the resulting composite objective is

g(S) = 〈S,W 〉+ γ‖A+ S‖∞.

If W is positive definite, this composite objective is strictly monotone, so it yields a
bound that is conservative, design compatible and admissible.

Another example when a composite objective is useful is when an experimenter is
interested in minimizing worst-case conservativeness alone, but still wants to ensure
that the bound they use is admissible. Recall from Section 3.3.3 that the operator
norm is monotone, but not strictly monotone, so it could yield inadmissible bounds.
This could be addressed by using a Schatten p-norm for a very large p, but such a
solution would suffer from numerical instability. An alternative is to regularize the
operator norm with the Frobenius norm in a composite objective. That is, for some
small γ > 0, one would use the objective

g(S) = ‖A+ S‖∞ + γ‖A+ S‖2
2.

Proposition 3.11 applies here because the operator norm is monotone and the Frobe-
nius norm is strictly monotone, meaning that the composite objective is strictly mono-
tone and yields a bound that is conservative, design compatible and admissible. One
would want to set γ to as small value as possible here, as this will ensure that the
worst-case conservativeness indeed is minimized as well as possible. It would be pos-
sible study the solution in the limit γ → 0, but we omit that here in the interest of
space.

3.4 Testing Admissibility of Variance Bounds

In Section 3.3, we introduced the notion of an admissibility and proposed several
methods for computing admissible variance bounds. In this section, we present a
semidefinite program for testing admissibility of a given variance bound. This allows
experimenters to test admissibility of a given variance bound—obtained by possibly
different methods than those presented above—before running an experiment.

The procedure Test-Admissibilitydecides whether a variance bound is admis-
sible by testing whether the optimal value of a particular semidefinite program is
positive. Recall that a variance bound B = A + S is inadmissible if there exists
another variance bound B̃ = A+ S̃ such that

B − B̃ = S − S̃
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is nonzero and positive semidefinite; on the other hand, if we can certify that no such
matrix exists, then the variance bound B is admissible. To this end, the procedure
Test-Admissibility searches over all slack matrices S̃ ∈ S with the extra constraint
that S − S̃ is positive semidefinite. What remains to be shown then, is whether
there exists a feasible solution such that this difference is nonzero. To determine
this, Test-Admissibility maximizes the trace of the difference, tr(S − S̃). If the
optimal value is positive, then the difference is nonzero and the original variance
bound is inadmissible; otherwise, the optimal value is zero and the variance bound is
admissible. The test for admissibility is given formally below in Algorithm 3.
Algorithm 3: Test-Admissibility
Input: Variance bound slack matrix S and unobservable pairs Ω

1 Solve the following semidefinite program

α←maximize
S̃

tr(S − S̃)

subject to x̃i,j = sij for all (i, j) ∈ Ω,

0 � S̃ � S.

(Admissible-SDP)

2 return False if optimal value α > 0 and True otherwise.

Note that S̃ = S is always a feasible solution to the optimization underlying Test-
Admissibility, but this yields an objective value of zero. The following theorem
guarantees correctness of the Test-Admissibility procedure.

Theorem 3.12. Test-Admissibility returns True if and only if the variance bound
is admissible.

Proof. Suppose that the variance bound B = A+S is admissible. Then, there does
not exist a matrix S̃ ∈ S such that S− S̃ is positive semidefinite and nonzero. Thus,
the only feasible solution to (Admissible-SDP) is S, which yields an objective value
of 0. In this case, Test-Admissibility returns True, which is the correct answer.

Suppose that the variance bound is inadmissible. Then, there exists a matrix
S̃ ∈ S such that S − S̃ is positive semidefinite and nonzero. This matrix S̃ is
feasible and yields a positive objective value, ie. tr(S − S̃) > 0. This inequality
follows because the trace is the sum of the eigenvalues and the matrix S− S̃ has non-
negative eigenvalues and at least one positive eigenvalue, as it is positive semidefinite
and nonzero. In this case, Test-Admissibility returns False, which is the correct
answer.

There are some numerical considerations when implementing Test-Admissibility
in practice. Namely, semidefinite programs can only be solved up to some desired
accuracy. This means that testing whether the optimal objective is exactly zero is
generally not possible using finite precision arithmetic, except in certain restricted
cases. For this reason, the main practical use case of Test-Admissibility will be
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to certify that a variance bound is sufficiently inadmissible, rather than certifying ad-
missibility. This numerical issue should not be of great concern, as an experimenter
can use Test-Admissibility to certify that a variance bound is approximately ad-
missible (up to an arbitrary desired tolerance) which is generally suitable in practice.

In order to decide that the input variance bound is inadmissible, Test-Admissibility
needs only to produce a feasible solution where tr(S − S̃) > 0. If the input variance
bound is inadmissible, this may require significantly less computation time than solv-
ing the underlying optimization program to optimality. In this way, early stopping
may be used in Test-Admissibility for increased computational efficiency.

3.5 Estimation of Variance Bounds

To construct an estimator of a variance bound, we use the fact that a quadratic form
can be reinterpreted as a linear function of the elements θiθj of the outer product
θθ

ᵀ. For example, a Horvitz–Thompson estimator of a variance bound B is

V̂B(θ) =
∑
i∈S

∑
j∈S

bijθiθj
Pr(i, j ∈ S)

.

Any linear estimator can in principle be used to estimate the variance bound, but
they will not perform equally well. It is beyond the scope of this work to investigate
which of the estimators in the linear class is best used for variance bounds, and we
restrict our discussion of estimation of the variance bound to the Horvitz–Thompson
estimator above. We direct interested readers to Middleton (2020), who provides an
in-depth discussion about estimators of quadratic forms that are design compatible.

When the variance bound is design-compatible, then the Horvitz–Thompson es-
timator will be unbiased; however, unbiasedness is a relatively weak condition and
experimenters will typically want the estimator to also have high precision. The pre-
cision of the estimator depends not only on the variance bound itself, but also on the
underlying design and the potential outcomes. To this end, for each pair of outcomes
(i, j) ∈ [2n]× [2n], define the inverse propensity indicator variable to be

R(i,j) =
1[i, j ∈ S]

Pr(i, j ∈ S)

and collect these n2 random variables into a vector, denotedRΩ̄ . Let Cov(RΩ̄) be the
covariance matrix of the inverse propensity indicator vector. The following theorem
presents a finite sample bound on the mean squared error of the Horvitz–Thompson
estimator for the variance bound.

Proposition 3.13. Suppose that the variance bound B is design-compatible. Then,
the mean squared error of the Horvitz–Thompson estimator may be bounded as

E[(VB(θ)− V̂B(θ))2] ≤ ‖Cov(RΩ̄)‖∗ · ‖B‖2
F ·M2 ,
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where M = maxi∈[2n]|θi| is the largest absolute value of all potential outcomes.

Proposition 3.13 upper bounds the mean squared error of the Horvitz–Thompson
estimator of the variance bound into the product of three distinct terms: one corre-
sponding to the design, one corresponding to the variance bound, and one correspond-
ing to the potential outcomes. The term ‖Cov(RΩ̄)‖∗ measures how well-behaved the
design is. This term may be large when either many second order exposure probabili-
ties Pr(i, j ∈ S) are very small or when pairs of exposures are highly correlated across
many units. Consistent estimation of the variance bound is impossible under either of
these conditions. In the no-interference setting, we have that ‖Cov(RΩ̄)‖∗ = 1 under
a Bernoulli design and more generally, ‖Cov(RΩ̄)‖∗ = B under an independent cluster
design, where B is the size of the largest cluster. Ultimately, the term ‖Cov(RΩ̄)‖∗
can only be rigorously investigated for a fixed exposure mapping and design; however,
we suspect that under mild interference and accommodating designs, this term can
be treated as a constant.

The terms ‖B‖F and M in Proposition 3.13 measure the magnitude of the co-
efficients in the variance bound and the potential outcomes, respectively. When
these terms are large, the magnitude of the variance bound itself can becomes large,
thereby increasing the mean squared error. In other words, Proposition 3.13 shows
that the Horvitz–Thompson estimator achieves higher precision when the design is
well-behaved, the coefficients in the variance bound are not execssively large, and the
potential outcomes are bounded.

As a corollary, we obtain conditions under which the Horvitz–Thompson estimator
is a consistent estimator of the variance bound.

Corollary 3.14. Suppose that the variance bound B is design compatible and that
the terms ‖Cov(RΩ̄)‖∗ and M are constant in an asymptotic sequence. If ‖B‖2

F → 0

in the asymptotic sequence, then the Horvitz–Thompson estimator is a consistent
estimator of the variance bound: E[(VB(θ)− V̂B(θ))2]→ 0.

Proposition 3.13 and Corollary 3.14 place a bound on the absolute value of po-
tential outcomes. In Appendix B.2.3, we show how that this may be replaced by a
weaker bound on fourth moments of the potential outcomes, although this changes
the norm used to measure the magnitude of the coefficients in the variance bound.

Corollary 3.14 demonstrates that in order to consistently estimate the variance
bound, the coefficients of the bound must be shrinking in the asymptotic sequence.
For consistent linear estimators of the treatment effect, one should expect that the co-
efficients of the variance matrix A are decreasing. For example, in the no-interference
setting, the Horvitz–Thompson estimator under the Bernoulli design satisfies ‖A‖2

F =

2/n, which goes to zero. Heuristically speaking, precise estimation of the variance
bound is possible when it is chosen so as not to substantially increase the squared
Frobenius norm.

In light of Proposition 3.13 and Corollary 3.14, experimenters may wish to choose
the objective in OPT-VB so that the resulting variance bound may be estimated
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with high precision with a Horvitz–Thompson estimator presented above. To this
extent, we propose the following regularized objective that encourages such variance
bounds:

g(S) = 〈S,W 〉2 + α‖A+ S‖2
F ,

where α ≥ 0 is a penalty parameter set by the experimenter. The first term aims
to produce a variance bound with small slack in the targeted potential outcome
directions, while the second term acts as penalty that prevents the variance bound
from having excessively large coefficients. The penalty parameter α facilitates this
trade-off.

We may further motivate the regularized objective in terms of the bias-variance
trade-off of the variance bound estimator to the true (unknown) variance. We write
V(θ) to denote the variance of the linear estimator, as a function of the potential
outcomes. As an estimator of the variance, the estimator features the following bias-
variance decomposition:

E[(V(θ)− V̂B(θ))2] = (VB(θ)− V(θ))2 + E[(VB(θ)− V̂B(θ))2] .

The first term on the right hand side is the square of the slack introduced in the
variance bound for outcome θ. The second term is the mean squared error of the
variance bound estimator to the variance bound. Using the trace formulation of the
slack term and the upper bound of the MSE in Proposition 3.13, we have that the
MSE of the estimator to the true variance is at most

E[(V(θ)− V̂B(θ))2] ≤ 〈S,θθᵀ〉2 +
(
‖Cov(RΩ̄)‖∗ ·M2

)
‖B‖2

F .

The regularized objective can be understood as this upper bound on the MSE. Rather
than using a specific outcome vector θ, we use a positive semidefinite matrix W
in order to target a smaller bias across many potential outcomes, as discussed in
Section 3.2.5 Using the upper bound above, we may consider setting the penalty
term as α = ‖Cov(RΩ̄)‖∗ ·M2, when we have some idea about the magnitudes of the
potential outcomes.

3.6 Conclusion and Open Problems

In this chapter, we have presented methodology for variance estimation under in-
terference and complex designs. We have characterized the variance of linear esti-
mators and derived the form of admissible upper bounds. We presented OPT-VB,
an optimization-based procedure that enables experimenters to select an admissible
variance bound based on their risk aversion and prior substantive knowledge. Once
selected, the bound itself may be estimated using any arbitrary linear estimator. As
discussed in Section 3.5, the choice of variance estimator may influence the selection
of the bound itself.
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Properties of the variance bound and its estimator depend on the design and the
estimator of the treatment effect. In this chapter, we have considered the design and
estimator to be fixed, but they are ultimately chosen by the experimenter. Thus,
we recommend that the experimenter choose the design, effect estimator, variance
bound, and variance bound estimator together in order to achieve a more holistic
approach to experimental design. Such a holistic approach may be guided by the
result of a pilot study, a model of a data-generating process, or a worst-case analysis.

There are several open problems suggested by this work, which we list below.

• Closed Form Variance Bounds: For specific experimental settings, derive
closed form admissible variance bounds. In this work, we derive a computational
procedure for deriving variance bounds under an arbitrary exposure mapping,
design, and (linear) treatment effect estimator. The benefit of such a compu-
tational technique is its wide applicability, but the downside is that it adds a
layer of complexity which may discourage certain experimenters from adopting
this approach. Deriving closed form variance bounds for specific experimental
settings would provide more transparent (if less flexible) methods of variance
estimation.

• Beyond Quadratic Variance Bounds: Extend the variance bound selec-
tion methodology beyond quadratic functions. In this work, we considered only
quadratic upper bounds. Although the class of quadratic functions was nat-
ural for a variety of reasons, several proposed variance estimators Aronow
et al. (2014); Menzel and Imbens (2021) rely on variance bounds which are
not quadratic forms. These variance estimators, however, are only applicable
in restricted settings and the way in which they resolve the implicit trade-off
in variance bounds is unclear. Combining these approaches would be of great
methodological interest.
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Chapter 4

Bipartite Experiments Under a Linear
Exposure-Response Assumption 1

In previous chapters, we considered two problems—covariate balancing in Chapter 2
and variance estimation in Chapter 3—which arise in the traditional potential out-
comes framework for designing and analyzing randomized experiments. In this chap-
ter, we go beyond the traditional setting and study the bipartite experimental frame-
work, where units that receive treatment are distinct from units on which outcomes
are measured. Our main contributions are new estimation and inference methodol-
ogy for treatment effects in the bipartite experimental framework, under a structural
assumption on the outcomes.

4.1 Introduction

Two-sided marketplaces are rife with interesting but difficult causal questions. What
happens to demand if shipping times or fees are reduced? What happens to people’s
willingness to use ride-hailing apps if more drivers are enrolled in specific cities?
What happens to long term user behavior if a hotel booking platform changes its
recommendation engine? The causal impact of these changes is hard to quantify, even
when using randomized experiments, because marketplace dynamics often violate
a central tenet of conventional experimentation: the Stable Unit Treatment Value
Assumption, abbreviated SUTVA. This assumption stipulates that the treatment
assigned to one unit does not affect any other units. Violations of this assumption is
a phenomenon known as interference, which is often present in the case of marketplace
experiments and complicates causal analysis.

The bipartite experimental framework offers a useful formalism to study two-sided
market experiments and other violations of SUTVA that can happen along the edges
of a bipartite graph. This stands in contrast with interference that occurs on graphs

1Based on the working paper: Christopher Harshaw, Fredrik Sävje, David Eisenstat, Vahab
Mirrokni, and Jean Pouget-Abadie (2021) “Design and Analysis of Bipartite Experiments under a
Linear Exposure-Response Model”. arXiv:2103.06392.
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where all units are of the same type (e.g. users of a social network). In the bipartite
experimental framework, we distinguish two types of units: units that can be subject
to an intervention and units whose responses are of interest to the experimenter. We
assign treatment to the former and measure the outcomes of the latter. The causal
impact of treating one group of units is measured on the other group by tracking the
exposure to treatment that the latter group receives, informed by the knowledge of the
bipartite graph between them. We remark that the treatment status of a single unit
may affect the measured outcomes of many units and, likewise, a measured outcome
may be affected by many treatment units.

For example, consider a marketplace where buyers compete for limited goods, some
of which may be perfectly or partially substitutable. Their demand of these goods
form a bipartite graph that potentially can be inferred by the marketplace owner.
The owner of the marketplace would like to determine the causal effect of discounting
prices on buyers’ marketplace behavior through a randomized experiment. Randomly
assigning certain buyers to receive a discounted price is often not possible, and might
even be prohibited, in which case randomization is only possible at the item-level.
At the same time, simply comparing discounted goods with non-discounted goods
runs the risk of severe bias: a discounted good may do well against a non-discounted
substitutable good, which does not accurately reflect a world where either both or
neither are discounted. Instead, the marketplace owner decides to monitor this change
at the buyer level, positing that, by tracking both their behavioral changes and their
exposure to discounted goods, the causal effect of the discount can be teased out.

As is done in much of the interference literature and other settings where SUTVA
is violated, assumptions on potential outcomes are made when the bipartite graph
has a many-to-many structure in order to allow for tractable inference. One such
assumption is existence of an exposure mapping, which posits that outcomes are
some simple function of the treatment assignments of neighboring units in the bi-
partite graph (Toulis and Kao, 2013; Aronow and Samii, 2017). In this work, we
study estimation of an all-or-nothing treatment effect in the bipartite experimental
framework under a linear exposure-response model, where exposures are linear func-
tions of assignments and responses are linear functions of the exposures. The main
contributions of this chapter are summarized as follows:

• We describe the Exposure-Reweighted Linear (ERL) estimator, an unbiased
linear estimator of the average total treatment effect under the linear exposure-
response model. We show that the ERL estimator is consistent and asymptot-
ically normal, provided the graph remains sufficiently sparse.

• We describe a variance estimator, which may be used to construct confidence
intervals via a normal approximation. We show that under mild conditions on
the exposure distribution, the variance estimator is unbiased. We achieve unbi-
asedness without assuming constant treatment effects or any other restrictions
on the heterogeneity between units’ potential outcomes.
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• We describe Exposure-Design, a cluster-based design which aims to increase
the precision of the ERL estimator. The design achieves this by increasing
the variance of individual exposures while decreasing the covariance between
different exposures. This improves precision is several settings of interest.

4.1.1 Related works

Within the wide-ranging causal inference literature, our work falls squarely within
the subset relying on the potential outcomes framework (Neyman, 1923; Imbens and
Rubin, 2015). The design and analysis of randomized experiments in the presence of
interference has garnered plenty of attention, spanning vaccination trials (Struchiner
et al., 1990), agricultural studies (Kempton, 1997), voter-mobilization field experi-
ments (Sinclair et al., 2012), and viral marketing campaigns (Aral and Walker, 2011;
Eckles et al., 2016b). It is beyond the scope of this chapter to extensively review the
literature causal inference with interference. Instead, we direct readers to the review
article by Halloran and Hudgens (2016).

Our work is primarily motivated by marketplace experiments. Evidence of in-
terference in marketplaces has been noted across industries for various experimental
designs (Gupta et al., 2019). Reiley (2006), Einav et al. (2011) and Holtz et al.
(2020) study the interference bias that results from supply-side randomization, while
Blake and Coey (2014) and Fradkin (2015) consider this problem in the context of
demand/user-side randomization. Basse et al. (2016) and Liu et al. (2020) compare
supply-side randomization to two-sided randomization as well as to budget-split de-
signs, showing bias can be reduced in the context of certain ad auction experiments.
More recently, Johari et al. (2020) characterize which randomization scheme (supply-
side, demand-side, or two-sided) leads to reduced bias as a function of market balance.

We consider a slightly different experimental setting, introduced by Zigler and
Papadogeorgou (2021), characterized by random assignment of treatment on one side
of the bipartite graph (demand- or supply-side), while outcomes are measured on the
other side. The advantage of this framework is that complex interference relationship
can be captured by an exposure function (similar to Aronow and Samii (2017)),
which is assumed to solely determine an unit’s outcome. This makes the problem of
estimating causal effects tractable despite the complex interference structure. Zigler
and Papadogeorgou (2021) study causal estimands which are more closely related
to direct effects rather than the all-or-nothing treatment effect considered here. In
addition, the analysis of their estimators requires that the bipartite graph be the
union of small connected components.

Motivated by marketplace experiments, Pouget-Abadie et al. (2019) introduce
a cluster-based design for general bipartite graphs in this framework and consider
a similar estimand and exposure-response assumption. Later, Doudchenko et al.
(2020) proposed a class of generalized propensity score estimators for this framework,
which are unbiased for both experimental and observational settings under standard
assumptions and a similar exposure-response assumption.
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Our work is the first to propose methods for provably valid inference (e.g., confi-
dence intervals) in the bipartite settings and to jointly consider estimators and designs
which improve overall precision of treatment effect estimators. While the cluster de-
sign of Pouget-Abadie et al. (2019) is based on the intuition of achieving a large
spread of exposures, it disregards the correlation of exposures and is not rigorously
tied to the performance of an estimator. Additionally, while the estimators proposed
by Doudchenko et al. (2020) are unbiased, they are based on a different approach
which requires fitting a generalized propensity score function. Neither of these pa-
pers present methods for valid inference.

4.2 Experimental Setting

In the bipartite experimental framework, the units which receive treatment are dis-
tinct from the units on which the outcomes are measured. For example, Zigler and
Papadogeorgou (2021) apply the framework to analyze how interventions on power
plants’ pollution affect the hospitalization rates among nearby hospitals. We discuss
the general bipartite framework in Section 4.2.1 and the linear exposure response
assumption in Section 4.2.2.

4.2.1 Bipartite experiments

In the bipartite experiment setting, there are two groups of units: the diversion units,
to which treatment is applied, and the outcome units, where outcomes are measured.
We denote the set of m diversion units by Vd and the set of n outcome units by Vo.

Each of them diversion units receives a (random) binary treatment zi ∈ {±1}, and
we collect these treatments into a treatment vector, z = (z1, z2, . . . zm) ∈ {±1}m. The
distribution over the random treatment vectors is called the design of the experiment
and it is chosen by the experimenter. Each of the outcome units i ∈ Vo is associated
with a potential outcome function yi(z), which maps the treatment assignments to
the observed value, which is a real number. In the bipartite setting, we assume that
each potential outcome function depends only on the treatment of a neighborhood set
of diversion units. More formally, there exists a neighborhood mapping N : Vo → 2Vd

such that for all outcome units i ∈ Vo,

yi(z) = yi(z
′) if zj = z′j for all j ∈ N (i) .

Throughout the chapter, we assume that the neighborhood mapping is known and
correctly specified, so that the above condition holds. We recover the standard Stable
Unit Treatment Value Assumption (SUTVA) when the diversion units are identified
with the outcome units and the neighborhood mapping is the identity function.

The number of potential outcomes for each outcome unit grows exponentially in
the size of its neighborhood. Zigler and Papadogeorgou (2021) avoid this issue by as-
suming that the bipartite structure is the union of many small connected components.
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Unfortunately, this is typically not a reasonable assumption in the marketplace set-
tings where we know that more varied interactions occur: buyers may interact with
a variety of products. Without further restrictions on the structure of the neigh-
borhoods or the potential outcome functions, inference of any causal estimand is
impossible (Basse and Airoldi, 2018; Sävje et al., 2021). Take, for example, an in-
stance where the neighborhood of each outcome unit is all diversion units. For this
reason, we introduce a stronger assumption on the potential outcomes.

4.2.2 Linear exposure-response model

In order to admit tractable inference of causal estimands, we consider a linear exposure-
response model, which consists of two underlying assumptions: a linear exposure
assumption and a linear response assumption, which we state formally below.

In the linear exposure-response model, we suppose that there is a weighted bi-
partite graph between diversion units and outcomes units, where the edges have
non-negative weights wi,j ≥ 0, which we arrange into an n-by-m incidence matrixW .
An edge wi,j represents the influence of diversion unit j on the outcome units i. We
say that outcome unit i and diversion unit j are incident if the weight wi,j is positive.
The degree of a diversion unit is the number of outcome units it is incident to, and
the largest degree among all diversion units is denoted dd. The degree of an outcome
unit is defined similarly and the largest degree among all outcome units is denoted
do. For simplicity, we assume that each outcome unit has degree at least 1 and the
weights incident to an outcome unit are normalized to sum to one, i.e. the rows of
the incidence matrix W sum to one. We also assume that this weighted bipartite
graph is known to the experimenter. In many market experiments, the experimenter
may construct an approximation of this graph from historical data.

The linear exposure assumption is that the treatment assignments influences the
potential outcomes only through a linear combination, which is more structured than
arbitrary influence. More formally, for each outcome unit i ∈ Vo, the exposure of
outcome unit i is

xi(z) =
∑
j∈Vd

wi,jzj ,

and for all pairs of assignment vectors z and z′ with xi(z) = xi(z
′), we have that

yi(z) = yi(z
′). This implies that the neighborhood mapping is such that N (i) = {j :

wi,j > 0}.
We arrange these n exposures into an exposure vector x(z) = (x1(z), x2(z) . . . xn(z)).

Because the exposure is a function of treatment, the experimental design completely
determines the exposure distribution. This linear exposure assumption is a general-
ization of the partial and stratified interference assumptions discussed by Hudgens
and Halloran (2008). When the treatment assignment vector z is clear from context,
we write simply xi and x for the ith exposure and the exposure vector, respectively.
Using matrix-vector notation, we may write the exposure vector as x(z) = Wz. Due
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to the normalization of the weights and the ±1 values of the treatment assignment,
each exposure takes values in the range [−1, 1].

The linear response assumption is that for each outcome unit, the potential out-
come is a linear function of its exposure. That is, for each outcome unit i ∈ Vo, there
exists parameters αi and βi such that

yi(z) = αi + βixi(z) .

We refer to αi as the unit-specific intercept and βi as the unit-specific slope. These
terms are unknown to the experimenter, and the experimenter only observes the
outcome yi(z), along with the sampled assignment vector z and the resulting exposure
vector x.

We refer to the linear exposure-response model as the combination of the linear ex-
posure assumption and the linear response assumption. The linear exposure-response
model places certain limits on the potential outcomes, but allows for more com-
plex structure in the bipartite graph. This trade-off is preferable in settings such as
marketplace experiments, where we know that a complex bipartite structure exists
and we are more comfortable with making simplifying assumptions about potential
outcomes. For further discussion on empirical and theoretical evidence for complex
structure in marketplace experiments, we refer the reader to Blake and Coey (2014);
Fradkin (2017); Johari et al. (2020).

Structural assumptions on the outcomes similar to the linear exposure-response
assumption presented here are commonly made throughout the interference literature.
The linear-in-means (LIM) model posits that a unit’s response is a linear function
of their own treatment, and the mean of the treatments of their group (Manski,
1993). The LIM model has been extended in various ways in the context of partial
interference (Baird et al., 2018; Offer-Westort and Dimmery, 2021) and social network
experiments (Bramoullé et al., 2009; Toulis and Kao, 2013). Chin (2019b) investigates
the use of machine learning estimators for the global average treatment effect under
a variation of the LIM when the terms in the linear model of arbitrary functions of
treatment. Basse et al. (2016) study model-assisted estimators and designs under the
“normal sum-model” which is similar to the linear exposure-response considered here,
but with a normal noise term. We remark that the bipartite setting with the linear
exposure-response assumption recovers the standard SUTVA setting when diversion
units are identified with the outcome units and the weight matrix is the identity.

From one perspective, the linear exposure-response model is a strong assumption.
It requires that the response for each unit is exactly a linear function in the exposure.
This rules out, for example, that different diversion units have different impacts on
a single outcome unit. But from another perspective, the model is completely unre-
strictive: it does not limit the heterogeneity between units at all. That is, knowing
the response function for one unit tells us nothing about the response function of
other units. While there are few settings in which the linear exposure-response model
will hold exactly, it will often be a useful approximation given its unrestrictiveness
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with respect to heterogeneity. In Section 4.5, we analyze the behavior of the ERL
estimator under a general non-linear response assumption, finding that it estimates
a best linear approximation to the average response. However, we leave it to future
work to more finely characterize the behavior of estimator under general responses
and we assume the linear exposure-response model holds exactly throughout the rest
of the chapter.

4.2.3 Causal estimand

We are interested in understanding the contrast between two possible worlds: one
where all diversion units receive treatment and one where they all receive control.
For an individual outcome unit, this contrast is captured by the individual treatment
effect, τi = yi(z = 1)− yi(z = −1) for i ∈ Vo. Just as in the typical SUTVA setting,
we cannot hope to estimate the individual treatment effects well because only one
potential outcome is observed for any one unit. In light of this, we opt to estimate an
aggregated causal quantity. In this chapter, we are interested in the Average Total
Treatment Effect (ATTE), which is the average contrast between the scenario that
all diversion units receive treatment and all diversion units receive control. More
precisely, ATTE is defined as

τ =
1

n

n∑
i=1

τi =
1

n

n∑
i=1

[
yi(z = 1)− yi(z = −1)

]
Under the linear exposure-response model, the ATTE is proportional to the aver-

age of the slope terms, as shown in the following proposition.

Proposition 4.1. Under the linear exposure-response assumption, the ATTE is τ =
2
n

∑n
i=1 βi.

Proof. The individual treatment effect of outcome unit i is proportional to its slope,
as

τi = yi(z = 1)− yi(z = −1) =
[
βixi(z = 1) + αi

]
−
[
βixi(z = −1) + αi

]
= 2βi ,

where we have used that xi(z = 1) = 1 and xi(z = −1) = −1. The result follows by
taking the average of the individual treatment effects.

There are two main challenges in estimating the ATTE in this setting: we want to
estimate the average of the slopes of many different linear response functions, but only
one point from each of the distinct linear response functions is observed. Although
stated in somewhat unfamiliar terms, this is the fundamental problem of causal in-
ference (Holland, 1986). The second challenge is that of constructing a treatment
design which realizes a desirable exposure distribution. As previously discussed at
the end of Section 4.2.2, this is a difficult task when the bipartite weight matrix has
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non-trivial overlapping structures. In the remainder of the chapter, we focus on ad-
dressing these two challenges by developing an estimator and a class of designs which
together accurately estimate the ATTE.

4.2.4 Cluster designs

Some of the analysis in this chapter assumes that the treatment is assigned according
to a independent cluster designs, where the diversion units are grouped into clus-
ters and treatment is assigned to an entire cluster. More formally, we say that a
partition C1, C2, . . . , C` of the diversion units is a clustering, which we denote as
C = {C1, C2, . . . , C`}. That is, all clusters are disjoint and the union of all clusters is
set of diversion units Vd. Given a clustering C, a treatment assignment from the corre-
sponding independent cluster design is drawn in the following way: independently for
each cluster, we assign all diversion within a cluster to have either treatment zi = 1

with probability p and treatment zi = −1 with probability 1 − p. For notational
simplicity, we consider the treatment probability p to be fixed for all clusters, but our
results extend to the setting where each cluster has its own treatment probability.
Note that the class of independent cluster designs is completely specified by C and
p.

4.3 The Exposure Reweighted Linear Estimator

We describe the Exposure Reweighted Linear Estimator, which is an unbiased esti-
mate of the ATTE under the linear exposure-response assumption. The Exposure
Reweighted Linear (ERL) estimator is defined below as

τ̂ =
2

n

n∑
i=1

yi(z)

(
xi(z)− E[xi(z)]

Var(xi(z))

)
. (4.1)

The ERL estimator requires knowledge of the mean and variance of each of the
marginal exposure distributions under the treatment design. For several commonly
used designs such as Bernoulli and independent cluster designs, these exposure char-
acteristics may be computed directly; however, for arbitrary designs, the expectation
and variance of the exposures may need to be estimated to high precision using sam-
ples drawn from the treatment design. We assume here that these exposure character-
istics are known exactly. We emphasize that the ERL estimator may be used under
any treatment design and not just the cluster-based treatment design we propose in
Section 4.6.

The ERL estimator belongs to the class of linear estimators, as it is a (random)
linear function of the observed outcomes. It shares similarities with the style of
Horvitz–Thompson estimators (Narain, 1951; Horvitz and Thompson, 1952), but is
not the same. The Horvitz–Thompson estimators re-weights an outcome by the prob-
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ability of observing that outcome, while the ERL estimator re-weights an outcome
by the normalized distance of the exposure from its mean. When there are many ex-
posures, such as under the linear exposure-response model, the type of re-weighting
done by the Horvitz–Thompson estimator would lead to excessively large variance.

4.3.1 Statistical analysis of the ERL estimator

In this section, we analyze the behavior of the ERL estimator as a point estimator of
the average total treatment effect (ATTE). First, we show that the ERL estimator is
unbiased. Then we show consistency and asymptotic normality of the ERL estimator,
provided that the bipartite graph is not too dense. Theorem 4.2 below ensures that
under mild conditions on the treatment design, there is no systematic bias in the
ERL estimator.

Theorem 4.2 (Unbiasedness). Suppose the design is such that each exposure has
a positive variance. Under the linear response assumption, the ERL estimator is
unbiased for the ATTE: E[τ̂ ] = τ .

Next, we analyze the asymptotic behavior of the ERL estimator. In the asymp-
totic analysis, we suppose that there is a sequence of bipartite experiments, in which
the number of units is growing to infinity. Strictly speaking, all quantities of the ex-
periment such as the bipartite graph, the outcomes, the treatment design, etc, should
be indexed by an integer N ; however, we drop these subscripts for notational clarity.

We make two additional assumptions about the bipartite experiments in this
asymptotic sequence. The first is that the potential outcomes are bounded. The
second is that the design has limited dependence between treatment assignments.

Assumption 4.3 (Bounded Potential Outcomes). The potential outcomes are bounded
in absolute value |yi(z)| ≤M , where M is a constant.

Assumption 4.4 (Design Conditions). The treatments assignments are distributed
according to an independent cluster design, where the probability of treatment p is
bounded away from 0 and 1 by a constant in the asymptotic sequence. Additionally,
the sizes of clusters are bounded by k, a constant in the asymptotic sequence.

Assumption 4.4 rules out certain classes of treatment designs, such as complete
randomization (i.e. group balanced designs). While it may be possible to obtain
similar asymptotic results under such designs, we limit our consideration to those
satisfying Assumption 4.4. Under these assumptions, we prove that ERL is consistent
when the bipartite graph is not too dense.

Theorem 4.5 (Consistency). Under Assumptions 4.3 and 4.4, and supposing that
ddd

3
o = o(n) in the asymptotic sequence, the ERL estimator converges in mean square

to the ATTE: limN→∞ E[(τ̂ − τ)2] = 0.
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The main technical assumption that we require for consistency is that ddd3
o = o(n)

in the asymptotic sequence, where we recall that dd and do are the maximum degrees of
the diversion and outcome units, respectively. Informally, this condition ensures that
the bipartite graph is not too dense as it grows. While consistency may hold under a
weaker condition for a particular design, some density assumption like this must be
made. As an example, consider the complete bipartite graph where all outcome units
receive the same exposure, in which case consistent estimation is impossible.

We now discuss a setting where this condition ddd3
o = o(n) holds. Suppose that

each diversion unit has fixed degree dd, which is a constant with respect to m and
n. The average degree of an outcome unit is then d̄o = dd(m/n). Assuming that the
maximum outcome degree do is within a constant factor of the average, this yields
that the term ddd

3
o = O(d4

d(m/n)3). Using that the diversion degrees are constant, we
get that this term is bounded by o(n) if m = o(n4/3). Thus, in graphs with constant
diversion degrees where the edges are evenly distributed between outcome units, the
hypothesis of Theorem 4.5 holds when m grows at a rate slower than n4/3.

We next describe the asymptotic distribution of the estimator. In particular, we
show that the ERL estimator converges in distribution to a normal distribution as
the size of the bipartite experiment grows, provided that the graph remains sparse.
This result is derived under the same asymptotic regime as above. In order to prove
the central limit theorem, we require an additional assumption on the asymptotic
sequence of bipartite experiments. Namely, we require that the variance of the ERL
estimator decreases no faster than the parametric rate.

Assumption 4.6 (Not Superefficient). The normalized variance of the ERL estima-
tor nVar(τ̂) is bounded away from zero asymptotically.

Assumption 4.6 rules out settings in which we can estimate the ATTE at a faster
than parametric rate. Such settings are theoretically possible, but not practically
relevant. In particular, Assumption 4.6 rules out two scenarios. The first is when
the magnitude of the potential outcomes approaches zero in the asymptotic sequence.
Note that this requires that almost all potential outcomes approach zero; the magni-
tude of the potential outcomes are generally non-zero even when their average is zero.
The second scenario is when the design close to perfectly pinpoints the potential out-
comes. This can be formalized as the variance of each individual term of the estimator
diminishes asymptotically, i.e. Var(τ̂i) → 0, where τ̂i = 2yi(z)(xi − E[xi])/Var(xi).
Both of these scenarios are knife-edge cases that we have good reason to believe would
not materialize in practice. Even if they do, the estimator would still be unbiased
and consistent, but its asymptotic distribution might not be normal.

We are now ready to present a central limit theorem which states that under mild
regularity conditions, the ERL estimator is asymptotically normal.

Theorem 4.7 (Asymptotic Normality). Under Assumptions 4.3, 4.4, and 4.6, and
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supposing that d1.6
d d4

o = o(n), the ERL estimator is asymptotically normal:

τ̂ − τ√
Var(τ̂)

d−→ N (0, 1) .

The proof relies on Stein’s method for bounding distances between distributions
(see, e.g. Ross (2011)). We use Stein’s method because standard techniques for estab-
lishing central limit theorems which heavily rely on independence are not applicable
in the bipartite experimental framework where exposures are necessarily correlated.
We remark that Stein’s method has been recently used for obtaining limiting behav-
ior of other estimators in the interference literature (Aronow and Samii, 2017; Chin,
2019a; Ogburn et al., 2020).

The assumptions on the asymptotic growth of the bipartite graph may be in-
terpreted similarly as those appearing in Theorem 4.5. Namely, they prevent the
bipartite graph from becoming too dense. We remark that the growth assumptions
required for asymptotic normality (Theorem 4.7) are stronger than those required
required for consistency (Theorem 4.5). The growth assumptions in Theorem 4.7 are
only sufficient and we conjecture that they are not necessary for asymptotic normality.
However, weakening these growth conditions would require a different analysis, either
by a more careful application of Stein’s method or by different means all together.

Assumption 4.4 allows for a broad class of designs. For example, unit-level
Bernoulli randomization falls into this class, but this design does not at all con-
sider the structure of the bipartite graph and will generally perform poorly. To derive
analytical results for this broad class of designs, the growth conditions on the bipar-
tite graph are quite restrictive, and they may be too restrictive in certain settings
where more dense interaction patterns occur. If one restricts focus to a smaller class
of designs, these growth conditions could potentially be weakened. The key implica-
tion of Assumption 4.4 together with the growth conditions is that the variance of
the exposures is large and the correlation between most pairs of exposures is small.
Heuristically, these conditions on the exposure distribution are the main aspects re-
quired for consistency and normality. We describe a design in Section 4.6 that directly
targets the exposure distribution to satisfy these conditions, and it will therefore be
better behaved than many of the designs allowed by Assumption 4.4.

4.4 Variance Estimation

In this section, we present methods for constructing confidence intervals for the ATTE
in the bipartite setting under the linear exposure-response assumption. If we knew
the variance of the ERL estimator, we could use Theorem 4.7 directly to construct
asymptotically valid confidence intervals. Because the variance of the ERL estimator
depends on the unobserved potential outcomes, we must construct an estimator of
the variance.
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In the typical experimental settings with SUTVA and binary treatments, unbiased
variance estimation is not possible without strong assumptions on the heterogeneity
between units (Imbens and Rubin, 2015). In light of this negative result, experi-
menters tend to favor conservative variance estimators that lead to valid but overly
wide confidence intervals. In contrast to the typical SUTVA setting with binary treat-
ments, we show that unbiased variance estimation is possible in the bipartite setting
under the linear response assumption when the exposures take many (i.e. non-binary)
values.

Our approach to constructing a variance estimator is to decompose the ERL
estimator into a weighted average of individual effect estimators, and to decompose
the variance of the ERL estimator as the average of the variances and covariances of
these individual effect estimators. To this end, define τ̂i , 2yi(z)(xi−E[xi])/Var(xi)

to be the individual terms in the ERL estimator. We may interpret τ̂i as an unbiased,
but very imprecise, estimator of the individual treatment effect τi. The ERL estimator
can be written as the average of these quantities: τ̂ = (1/n)

∑n
i=1 τ̂i. The variance of

the ERL estimator may be decomposed as

Var(τ̂) = Var

(
1

n

n∑
i=1

τ̂i

)
=

1

n2

n∑
i=1

[
Var(τ̂i) +

∑
j 6=i

Cov(τ̂i, τ̂j)

]
.

We will construct unbiased estimators of Var(τ̂i) and Cov(τ̂i, τ̂j) and average over these
estimators to obtain an estimator of the variance of the ERL estimator. Because we
are averaging over many unbiased estimators, the average will often be well-behaved
even if the individual estimators perform poorly in mean squared sense.

We begin by deriving an estimator for the individual variance terms, Var(τ̂i). To
this end, we define the random variable

Qi =
(xi − E[xi])

2

Var(xi)2
− Var(xi)(x

2
i − E[x2

i ])− Cov(xi, x
2
i )(xi − E[xi])

Var(xi) Var(x2
i )− Cov(xi, x2

i )
2

,

which is a quadratic function of the exposure xi. Because the exposure distribution
is known to the experimenter, Qi is an observable quantity. The following lemma
demonstrates that by re-weighting the observed quantity yi(z)2 by Qi, we obtain an
unbiased estimate of the individual variance terms.

Lemma 4.8. Fix an outcome unit i ∈ Vo. If the exposure xi takes at least three
values with non-zero probability, then the variance of unit i’s individual treatment
effect estimator is equal to

Var(τ̂i) = 4 · E[yi(z)2Qi] .

We remark that the condition that the support of the exposure contains at least
three points is critical for Lemma 4.8 to go through; in fact, when the exposure
takes only binary values, then previously established results in the SUTVA setting
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show that these individual variance terms cannot generally be estimated without bias
(Imbens and Rubin, 2015). Moreover, because the exposure distribution is known
before the experiment is run, the experimenter may determine whether this condition
holds. At the end of this section, we discuss variance estimation when this support
condition on the exposures does not hold.

We estimate the covariance terms Cov(τ̂i, τ̂j) in a similar manner. For each pair
of outcome units i, j ∈ Vo, we define the random variable

Ri,j =
(xi − E[xi])(xj − E[xj])

Var(xi) Var(xj)
−ai,j(xixj − E[xixj]) + bi,j(xi − E[xi]) + ci,j(xj − E[xj])

Ψi,j

,

which is a bivariate degree two polynomial in the exposures xi, xj where the coeffi-
cients ai,j, bi,j, ci,j, and Ψi,j depend on the joint distribution of the pair of exposures.
More precisely, these coefficients are defined as

ai,j = Var(xi) Var(xj)− Cov(xi, xj)
2,

bi,j = Cov(xi, xj) Cov(xixj, xj)− Var(xj) Cov(xixj, xi),

ci,j = Cov(xi, xj) Cov(xixj, xi)− Var(xi) Cov(xixj, xj),

Ψi,j = Var(xixj)(Var(xi) Var(xj)− Cov(xi, xj)
2)− Var(xi) Cov(xixj, xj)

2

− Var(xj) Cov(xixj, xi)
2 + 2 Cov(xi, xj) Cov(xixj, xj) Cov(xixj, xi) .

We remark that these coefficients depend only on the joint distribution of pairs of
exposures and so they are known to the experimenter. Thus, just as Qi is an observ-
able quantity, so too is Ri,j. The following lemma demonstrates that reweighting the
product of two potential outcomes yi(z)yj(z) by Ri,j yields an unbiased estimate of
the individual covariance terms.

Lemma 4.9. Fix a pair of outcome units i 6= j ∈ Vo. If Ψi,j 6= 0, then the covariance
between individual treatment effect estimates τ̂i and τ̂j may be expressed as

Cov(τ̂i, τ̂j) = 4 · E[yi(z)yj(z)Ri,j] .

The condition that Ψi,j is nonzero ensures that the re-weighting factor Ri,j is well-
defined. One situation in which Ψi,j is zero is when xi = xj with probability one:
the condition that Ψi,j is nonzero rules out this scenario. We have not been able to
construct a joint distribution for which the denominator Ψi,j is zero without perfectly
correlated exposures. We conjecture that no such distribution exists, but we have not
been able to prove this yet. Regardless, the exposure distribution is known, so the
experimenter can determine whether Ψi,j = 0 for any pairs of outcome units. At the
end of this section, we discuss how one can proceed in the case that Ψi,j = 0 for some
pairs of units.
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Lemmas 4.8 and 4.9 together suggest the following variance estimator:

V̂ar(τ̂) ,
4

n2

n∑
i=1

[
yi(z)2Qi +

∑
j 6=i

yi(z)yj(z)Ri,j

]
.

When the exposure distributions which are symmetric about 0 (e.g. an indepen-
dent cluster design with treatment probability p = 1/2), the random variables Qi and
Ri,j simplify considerably as the Cov(xixj, xi) and Cov(xixj, xj) terms are zero. In
this case, these functions may be written simply as

Qi =
x2
i

Var(xi)2
− x2

i − E[x2
i ]

Var(x2
i )

and Ri,j =
xixj

Var(xi) Var(xj)
− (xixj − E[xixj])

Var(xixj)
.

For complex designs where closed forms of these quantities are not readily available,
these coefficients may be estimated to arbitrary precision via a Monte Carlo procedure
(Fattorini, 2006). The following theorem shows that the proposed variance estimator
is unbiased.

Theorem 4.10 (Unbiased Variance Estimator). Under the conditions in Lemmas 4.8
and 4.9, the variance estimator of the ERL point estimator is unbiased, i.e. E[V̂ar(τ̂)] =

Var(τ̂).

When the conditions of Lemmas 4.8 and 4.9 do not hold, our proposed variance
estimator will be ill-defined or biased. Indeed, it is possible that no unbiased variance
estimator exists in such settings (Imbens and Rubin, 2015). In this case, one can
replace the problematic Var(τ̂i) and Cov(τ̂i, τ̂j) terms, which cannot be estimated
directly, with upper bounds that can be estimated. Specifically, if the exposure
xi takes only two values, so Lemma 4.8 does not hold, then one can replace the
variance of the individual treatment effect estimate with the second raw moment:
Var(τ̂i) = E[τ̂ 2

i ] − E[τ̂i]
2 ≤ E[τ̂ 2

i ], as Aronow and Samii (2013) do when they invoke
Young’s inequality. We may thus replace the yi(z)Qi terms in our variance estimator
with τ̂ 2

i . Similarly, if Ψi,j = 0 for some pair of outcome units i, j ∈ Vo and Lemma 4.9
does not hold, then one can replace the corresponding covariance term with an upper
bound obtained from Cauchy-Schwarz and AM–GM inequalities:

Cov(τ̂i, τ̂j) ≤
√

Var(τ̂i) Var(τ̂j) ≤
1

2

(
Var(τ̂i) + Var(τ̂j)

)
.

Under Assumptions 4.3 and 4.4, replacing one of these individual terms in this way
leads to a positive bias of the normalized variance estimator on the order O(1/n).
Thus, the variance estimator remains asymptotically unbiased as long as we apply
these upper bounds to o(n) terms. Even when the terms can be estimated without
bias, it could still be preferable to use the bound here if the denominators of Qi or
Ri,j are small, because small denominators will increase the variance of the estimator.

We may now use our variance estimator together with the asymptotic normality
to construct well-motivated confidence intervals. We may estimate 1 − α confidence
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intervals by

τ̂ ± Φ−1(1− α/2)

√
V̂ar(τ̂) ,

where Φ−1 : [0, 1] → R is the quantile function of the standard normal deviate. It is
possible that the proposed variance estimator may take negative values; in particular,
this may happen when the true variance is extremely small (on a normalized scale)
or the sample size is small. When the variance estimator takes a negative value,
this construction of confidence intervals is not well-defined. We suggest two possible
alternatives here: the experimenter may either use the absolute value of the variance
estimator under the square root, or the experimenter may use a more conservative
variance estimate.

4.5 Analyzing ERL Without the Linear Response
Assumption

Our previous analysis of the ERL estimator heavily relied on the linear response
assumption. In this section, we show that without the linear response assumption,
the ERL estimator may be interpreted as estimating a simple linear regression of the
outcomes onto the exposures. The following theorem derives the expectation of the
ERL estimator without the linear response assumption.

Theorem 4.11 (Arbitrary Responses). Assume that the potential functions are an
arbitrary function of the exposures: yi(z) = yi(xi). Then, the expectation of the ERL
estimator is

E[τ̂ ] =
2

n

n∑
i=1

β̂i ,

where β̂i is the coefficient of the exposure xi in an OLS regression of yi on xi: β̂i =(
Cov(xi,yi(xi))

Var(xi)

)
.

Theorem 4.11 shows that under a general (non-linear) response assumption, the
ERL estimator may be interpreted as estimating the average of the slopes of the
best linear fit of the outcome to the exposure. We emphasize that this regression
cannot be run by the experimenter because the outcomes are not known. Nonetheless,
Theorem 4.11 suggests that the ERL estimator may be interpreted, more generally,
as estimating this regression-based estimand.

This result is related to several previous results within and outside causal inference.
Realizing that most conditional expectation functions are not linear, statisticians and
econometricians have advocated for an interpretation of linear regression as capturing
an interpretable approximation of the underlying relationship between the outcome
and the regressors (Chamberlain, 1984; Manski, 1991; Goldberger, 1991). Specifically
for causal inference, Angrist (1998) highlights that when linear regression is used
to estimate treatment effects in an observational setting, the estimator captures a
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variance-weighted average of unit-level causal effects (see also Aronow and Samii,
2015 and Sloczynski, 2020). In a similar vein to these results, Theorem 4.11 shows
that the ERL estimator captures a policy-relevant causal quantity even if the linear
response assumption does not hold. The difference is that the effect it captures is
a raw average over the units, and the approximation is with respect to each unit’s
response function.

Under the linear response assumption, this regression-based estimand is equal to
the average total treatment effect (ATTE) defined in Section 4.2.3. However, these
two estimands will not coincide for arbitrary response functions and designs. Aside
from the linear response assumption, there are several scenarios where we will expect
the ATTE and the regression-based estimand to be similar. The first scenario is when
the design very closely approximates the Bernoulli design so that exposures have mean
zero and concentrate around ±1. When the design is exactly Bernoulli, one can verify
that the regression-based estimand is exactly equal to the ATTE, which matches the
intuition from the no-interference setting. The second scenario is when the response
function is well-approximated by a linear function. An extensive investigation into
formal conditions under which the regression-based estimand and the causal estimand
(ATTE) are equivalent is beyond the scope of this work.

4.6 A Cluster Design for Targeting Exposure Distri-
bution

In this section, we describe Exposure-Design, an independent cluster design which
aims to improve precision of the ERL estimator by constructing a desirable exposure
distribution. To this end, we first show in Section 4.6.1 that increasing the variance
of exposures and decreasing the covariance between exposures can lead to improved
precision of the ERL estimator in settings of interest. In Section 4.6.2, we present
a clustering objective which aims to achieve such exposure distributions, thereby
improving the precision of ERL estimator. Finally, we present a heuristic algorithm
for optimizing this clustering objective in Section 4.6.3.

4.6.1 An ideal exposure distribution

Like all re-weighted linear estimators, the ERL estimator will incur a large mean
squared error when the re-weighting terms are large. In particular, if the variance of
an exposure Var(xi(z)) is close to zero, the corresponding term of the estimator in
(4.1) will become large, yielding a high mean squared error even though the estimator
is unbiased. In general, experimenters should use designs for which the corresponding
exposure variances are large.

However, large exposure variances should not be the only property of the exposure
distribution that experimenters focus on. Consider a naive design that places equal
probability on two treatment vectors: either all diversion units receive treatment
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(z = 1) or all diversion units receive control (z = −1). Under this design, all of the
exposure variances are 1, which is the largest possible variance. However, we observe
either all of the treatment outcomes or all of the control outcomes, but never a mix of
the two; in fact, the estimator itself takes only two values. Thus, the ERL estimator
will suffer very large MSE under this design, despite the individual exposure variances
being as large as possible. This raises the question: how should we construct a design
that improve the precision of the ERL estimator?

This is a challenging task, since the precision of the ERL estimator depends on the
unobserved outcomes. Indeed, a universally optimal design does not exist (Harshaw
et al., 2021). However, we argue that a good heuristic is to construct the design so
that the variance of the exposures are large and the covariance between most pairs
of exposures are close to zero. As discussed at the end of Section 4.3.1, a design
which directly targets these aspects of the exposure distribution may hope to ensure
high precision of the ERL estimator under weaker growth conditions on the bipartite
graph than those presented in our analysis.

To further motivate this heuristic, consider the scenario where all of the individual
treatment effects are zero, i.e. the response functions are of the form yi(xi) = αi.
Studies of these sort are sometimes called uniformity trails or A/A tests. In this
scenario, one may derive the MSE of the ERL estimator as

E[(τ̂ − τ)2] =
4

n2

[
m∑
i=1

α2
i

1

Var(xi)
+ 2

∑
i<j

αiαj
Cov(xi, xj)

Var(xi) Var(xj)

]
.

As the individual variance terms increase, the first sum decreases. The effect of
the second term depends on the sign of the product of intercepts, αiαj. Generally
speaking, these intercepts are unknown to the experimenter. For the sake of this
discussion, consider when the outcomes yi(z) are non-negative, in which case all
intercepts αi and their products αiαj also are non-negative. In this case, decreasing
the correlation between exposures would decrease the second term, leading to an
overall decrease in the MSE of the ERL estimator.

4.6.2 Clustering objective for targeting exposure distribution

In the previous section, we argued for constructing a design so that the variance of
exposures is large and the covariance between most exposures is small. However,
as argued in Section 4.2.2, constructing a treatment distribution which realizes a
desired exposure distribution is generally not possible due to overlapping structures
in the bipartite graph. In this section, we present an optimization formulation for an
independent cluster design which aims to achieve large exposure variance and small
correlations between exposures, to the extent that this is possible given the bipartite
graph.

We propose choosing a cluster design which maximizes the following objective
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function:

max
clustering C

n∑
i=1

[
Var(xi)− φ

∑
i 6=j

Cov(xi, xj)

]
(Exposure-Design)

The variance and covariance of the exposures above are with respect to the random
treatment assignments of the corresponding independent cluster design. The first
term in the objective is the sum of the exposure variances, so maximizing this term will
encourage large exposure variances. The second term penalizes positive correlation
between exposures, and maximizing it encourages small correlation. The correlation
penalizing parameter φ ≥ 0 controls the relative emphasis between large exposure
variances and small exposure correlations. When φ = 0, then the emphasis is placed
entirely on increasing individual exposure variance; this is typically undesirable, as
the optimal solution is often a single cluster containing all diversion units, which
results in the “naive” design where either all diversion units receive treatment or all
diversion units receive control. Increasing φ places more emphasis on decorrelating
exposures.

A key insight to solving the Exposure-Design formulation is that it may be
reformulated as a correlation clustering problem, which is well-studied in the algo-
rithms literature (Bansal et al., 2002; Swamy, 2004; Charikar et al., 2005). The
existing computational understanding of these correlation clustering problems is an-
other reason to use the Exposure-Design objective. The following proposition
states the re-formulation of the Exposure-Design objective into the correlation
clustering variant, denoted Corr-Clust.

Proposition 4.12. For each pair of diversion units i, j ∈ Vd, define the value ωi,j ∈ R
as

ωi,j = (1 + φ)
m∑
k=1

wk,iwk,j − φ
( m∑
k=1

wk,i

)( m∑
k=1

wk,j

)
, (4.2)

where wk,i is the weight of the edge between the kth outcome unit and the ith diversion
unit. Exposure-Design is equivalent to the following clustering problem:

max
clusterings C

∑
Cr∈C

∑
i,j∈Cr

ωi,j . (Corr-Clust)

Although Corr-Clust is a variant of the weighted maximization-type correlation
clustering problems previously studied in the literature (Charikar et al., 2005; Swamy,
2004), is not equivalent to previously studied formulations in an approximation-
preserving sense, as it takes positive and negative values. Given that weighted maxi-
mization correlation clustering is NP-Hard (Charikar et al., 2005), it is reasonable to
presume that our formulation Corr-Clust is also computationally hard. However,
these computational complexity considerations are beyond the scope of this work.

We remark that Exposure-Design places no explicit constraint on the number of
clusters produced by the clustering algorithm. However, our analysis in Section 4.3.1
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suggests that limiting the cluster sizes, and thereby reducing correlation between
exposures, helps to achieve consistency and normality of the ERL estimator. This
desirable cluster structure is not captured by the optimization problem itself, but
we handle it through our local search heuristic described in Section 4.6.3. We also
remark that the Exposure-Design objective does not directly minimize the MSE of
the ERL estimator, but should instead be understood as a useful heuristic. Finally,
we remark that it is impossible to induce a negative correlation between exposures in
the class of independent cluster designs, so the second term of the objective attains
its maximum when the exposures are uncorrelated.

The Exposure-Design is conceptually similar to the correlation-clustering based
design presented in Pouget-Abadie et al. (2019), but it differs in several key ways.
Exposure-Design provides experimenters the flexibility to trade-off larger expo-
sure variances with more de-correlated exposures by setting the parameter φ. In
contrast, the cluster design of Pouget-Abadie et al. (2019) focuses solely on the expo-
sure variance by maximizing which is referred to as “empirical dose variance” in their
paper. As we demonstrate in Appendix C.3, their objective is equal to ours when
the trade-off parameter is set to φ = 1/(n − 1). In this sense, their cluster design
can be viewed as a specific instance of the more general Exposure-Design, where a
greater emphasis is placed on maximizing the exposure variances. More importantly,
the Exposure-Design presented in this chapter is designed to increase the precision
of the ERL estimator, while the correlation-clustering based design of Pouget-Abadie
et al. (2019) is motivated by the intuition that extreme exposures are helpful in this
setting.

4.6.3 Local search heuristic for Exposure-Design

We now describe a local search heuristic for optimizing Exposure-Design. The local
search is initialized with the singleton clustering and iteratively seeks to improve the
clustering. In each iteration, the algorithm loops through random pairs of diversion
units i, j ∈ Vd and moves diversion unit j to the cluster currently containing diversion
unit i if that change improves the objective value, subject to a user-defined constraint
on the clusters. The local search algorithm is presented more formally below as
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Algorithm 4.
Algorithm 4: Local Search(W , φ, k, T , cluster constraints)
1 Initialize singleton clustering C = {{1}, {2}, . . . {m}}
2 for iterations t = 1 . . . T do
3 Choose a uniformly random permutation π on the diversion units.
4 for diversion units i ∈ π do
5 Randomly select a diversion unit j with probability proportional to

(W
ᵀ
W )i,j

6 Let C and C ′ be the clusters containing diversion units i and j,
respectively.

7 if moving j from cluster C ′ to C increases objective value & satisfies
user-defined constraints then

8 Move diversion unit j from cluster C ′ to C.

9 return clustering C
Given a diversion unit i, we use wedge sampling to randomly select another di-

version unit j. that is, sampling j proportional to (Cohen and Lewis, 1999). We
use the wedge sampling procedure because it encourages picking pairs of units for
which (W

ᵀ
W )i,j =

∑n
k=1wk,iwk,j is large, which often results in a large correlation

clustering weight ωi,j. Performance improvements are obtained by computing the cor-
relation clustering weights ωi,j only when they are needed to evaluate changes in the
objective. In particular, the first term of (4.2) is an inner product whose computation
scales with the sparsity of the bipartite graph and the second term is the product of
sums which may be pre-computed.

Diversion unit j is moved into the cluster containing diversion unit i if two con-
ditions are met: the objective increase and the user-defined cluster constraints are
satisfied. We recommend that experimenters choose constraints which limit the clus-
ter sizes in some way. For example, the experimenter may choose to constraint the
number of diversion units within a cluster. In our implementation, we constrain the
sum of the (unweighted) degrees of diversion units within a cluster to be a fixed frac-
tion of the total number of edges. In this way, no cluster has too many outgoing
edges to outcome units. Constraining the clusters in this way implicitly limits the
amount of dependence between exposures, which is one of the key aspects underlying
the design conditions in Assumption 4.4 of our analysis.

This local search algorithm is different from the one presented in Pouget-Abadie
et al. (2019), which approximates the Gram matrix W ᵀ

W offline as the sum of a
sparse matrix and a rank-one matrix, so that the algorithm works with an approxi-
mation to the objective. In contrast, our algorithm accepts and rejects changes based
on the exact value of the objective. Relative to Elsner and Schudy (2009), this local
search does not consider moving units to new empty clusters, nor does it consider
merging clusters. Moves of the first type seem consistently unprofitable in our set-
ting. As for merges, we find that the algorithm is able to essentially perform them
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by moving one diversion unit at a time.

4.7 An Application to Online Marketplace Experi-
ments

In this section, we apply our proposed methodology to a simulated marketplace ex-
periment based on a product review dataset from the Amazon marketplace (McAuley
et al., 2015; He and McAuley, 2016). The Amazon product review dataset contains 83
million reviews made by 121 thousand customers on 9.8 million items. In this appli-
cation, we imagine running an experiment where we change the pricing mechanism of
items in the marketplace, and are interested in how a customer’s reported satisfaction
is affected by this change in pricing mechanism. The items sold in the marketplace
are the diversion units and the customers in the marketplace are the outcome units.
An edge is present in the bipartite graph if a customer reviewed an item and all edges
incident to an outcome unit are uniformly weighted. Thus, a customer’s exposure
is the unweighted average of the treatment status of the items they have previously
reviewed.

In our simulated marketplace experiment, we generate potential outcomes via
an exposure-response function. The outcomes themselves are the satisfaction score
of a customer given their exposure; the responses in this study are simulated, but
we can imagine that they are either reported directly by a customer or constructed
based upon text analysis of the customer’s review. In the case of a linear response,
a positive slope indicates an increase in customer satisfaction as a result of the new
pricing mechanism, while a negative slope indicates a decrease in satisfaction as a
result of the new pricing mechanism.

We preprocess the Amazon produce review dataset for computational tractability
in the same manner as Pouget-Abadie et al. (2019). We begin by removing customers
that have reviewed fewer than 100 items. Next, we execute a balanced partitioning
algorithm (Aydin et al., 2019) on the entire bipartite graph to create groups of cus-
tomers and groups of items. After this preprocessing, we define the diversion units to
be the item groups and the outcome units to be the customer groups. The resulting
bipartite graph has 1 thousand outcome units, 2.4 million diversion units, and 7.1
million edges. We emphasize that this bipartite graph does not satisfy the growth
conditions (specified in Section 4.3.1) required for consistency and normality under
the broad class of designs captured by Assumption 4.4. In this sense, this application
may be considered a test of the efficacy of the proposed Exposure-Design under
weaker growth conditions.

We investigate the statistical properties of the ERL estimator, the variance esti-
mator, and the resulting confidence intervals under various treatment designs in this
application. In particular, we compare our proposed Exposure-Design to several
existing designs: the Bernoulli design, the correlation clustering design of Pouget-
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Abadie et al. (2019), and the balanced partitioning cluster design of Eckles et al.
(2016a), as implemented by Aydin et al. (2019). Although the balanced partition-
ing design was not developed for the bipartite setting, we may expect it to achieve
high precision estimates if the clustering produces decorrelated exposures with large
variances.

We generate the potential outcomes in three simulations, where we vary the re-
sponse functions that are used. The first two simulations feature linear response
functions and the third simulation features a non-linear response function. We re-
mark that although the parameters of the response functions are randomly chosen in
our simulations, this random parameter draw is made only once and the outcomes
themselves are fixed across all sampled assignments of all designs. These simulations
are listed below.

• (Mostly) Positive Treatment Effect. In this simulation, we set almost all
of the individual treatment effects to be positive across units, while varying
the responses amongst the units. More precisely, we sample the slope terms as
βi ∼ N (1, 1/4) and the intercept terms as αi ∼ N (0, 1/8).

• (Nearly) Zero Treatment Effect. In this simulation, we set all the individ-
ual treatment effects close to zero, while varying the baseline outcomes. The
outcomes are chosen to be mostly positive. More precisely, we sample the slope
terms as βi ∼ N (0, 1/8) and the intercept terms as αi ∼ N (2, 1/4).

• Non-Linear Response. In this simulation, we use a non-linear response func-
tion to specify the potential outcomes. In particular, the response of outcome
unit i is yi(xi) = 1 − x2 + αi, where αi ∼ N (0, 1/8). Under this response, all
individual treatment effects are 0. Because the linear response assumption is
not satisfied, we should not expect our statistical analysis (unbiasedness, con-
sistency, normality, etc) to hold exactly.

When using the Exposure-Design, we set the correlation penalty parameter to
φ = 0.223, chosen from a grid of 10 points between [0, 2]. The clustering itself is
obtained using our local search heuristic presented in Section 4.6.3. Recall that the
correlation clustering objective of Pouget-Abadie et al. (2019) may be obtained by
setting φ = 1/(n − 1). For this reason, we compute the corresponding cluster by
running our local search heuristic with φ = 0.001 ≈ 1/(n− 1).

A summary of the main results from these simulations appears in Table 4.1. For
each treatment design and simulation, we sample 20, 000 exposure vectors, compute
the observed outcomes, and construct the corresponding ERL and variance estima-
tors. Given the ERL and variance estimators, we construct the confidence intervals
as described in Section 4.4, with absolute value corrections when the variance esti-
mator takes a negative value. For each simulation and treatment design, we report
the root mean square error (RMSE) of the ERL estimator, the average width of the
95% confidence intervals, and the coverage of the 95% confidence intervals.
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Exposure
Design

Correlation
Clustering

Balanced
Partitioning Bernoulli

Simulation 1
RMSE 0.049 0.088 0.073 0.659
CI Width 0.219 0.328 0.283 2.576
CI Coverage 91.8% 94.1% 93.7% 95.1%

Simulation 2
RMSE 1.81 2.05 1.85 43.83
CI Width 7.03 8.00 7.21 190.8
CI Coverage 94.7% 95.0% 94.6% 95.1%

Simulation 3
RMSE 0.86 0.90 0.78 24.37
CI Width 3.47 3.82 3.39 95.15
CI Coverage 95.6% 96.9% 96.9% 95.1%

Table 4.1: Simulation results

We draw particular attention to a few trends in these results. Exposure-Design
achieves the smallest RMSE in the simulations which satisfy the linear response as-
sumption. All cluster-based designs achieve significantly smaller RMSE than the
Bernoulli design, which emphasizes the importance of carefully considering the ex-
posure distribution when the growth conditions (specified in Section 4.3.1) are not
satisfied. The confidence intervals in Simulation 1 under Exposure-Design cover
below the nominal 95% level, indicating that either the sampling distribution of the
ERL estimator isn’t sufficiently approximated by a normal or the variance estimator
isn’t sufficiently concentrated. The confidence intervals in Simulation 3 cover slightly
above the nominal 95% level, which is a result of conservative bias in the variance
estimate due to non-linearity of the response.

Figure 4.1 contains histograms of the ERL estimator for each simulation and
design, where the rows correspond to the designs and the columns correspond to the
simulations. The dotted vertical line in the plot is the true ATTE. In all simulations,
the distribution of the ERL estimator appears unimodal, centered around the ATTE,
and (roughly) normal, which is empirical evidence that the normal approximation
used to derive confidence intervals may be well-motivated for Exposure-Design
and other cluster-based designs. This is to be expected for Simulations 1 and 2
where the linear response assumption holds, but is perhaps surprising in Simulation
3, which features a highly non-linear response. This unbiasedness may be explained
by Theorem 4.11 in the following way: the quadratic responses in Simulation 3 yield
zero treatment effect for all units. Although the best linear approximation to each
quadratic response doe not well-approximate the quadratic response itself, the linear
approximation has zero slope and so, in this sense, captures the ITE exactly.

Figure 4.2 contains histograms of the variance estimator for each simulation and
treatment design, where the rows correspond to the designs and the columns corre-
spond to the simulations. The dotted vertical line in the plot is the empirical estimate
of the variance of the ERL estimator, computed from samples. The variance estimator
is unbiased in Simulations 1 and 2, which aligns with Theorem 4.10; however, because
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Figure 4.1: Histograms of the ERL estimator in simulations.

the empirical variance estimate is used, the blue line is close to (but not exactly) the
true variance. Increasing the number of sampled exposure vectors decreases this error,
but drawing more than 20 thousand samples is prohibitively expensive given the size
of the data. In Simulation 1, the mean squared error of all cluster-based designs is so
small that the variance estimator takes negative values. In Simulation 3, the response
is highly non-linear so that the variance estimator incurs a positive bias, which results
in a coverage slightly above the nominal level. Interestingly, the variance estimator
under the balanced partitioning design is more concentrated around its mean, which
is worth further rigorous investigation.

Figure 4.3 contains a plot for each simulation, where the mean squared error is
plotted against the correlation penalizing parameter φ. The mean squared error of
the balanced partitioning design appears as a dotted blue line. In Simulations 1 and
2 where the linear response assumption holds, there is a range of values of φ where
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Figure 4.2: Histograms of the variance estimator in simulations.
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Figure 4.3: MSE of the ERL estimator as trade-off parameter φ is varied. First values of
φ are .001 and .01.

Exposure-Design achieves lower mean squared error than the balanced partitioning
design. In our simulations, the choice of φ ≈ 1/4 typically achieves lowest mean
squared error. However, no design is optimal across all types of potential outcomes
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(Harshaw et al., 2021) and so we encourage experimenters to select φ (and more
generally, select designs) by running tests on simulated data.

4.8 Conclusion and Open Problems

In this chapter, we have presented methodological contributions towards estimating
treatment effects in the linear-exposure response model for bipartite experiments:
namely, the Exposure Reweighted Linear (ERL) estimator for consistent and unbiased
estimation of average total treatment effect, an unbiased variance estimator which
facilitates construction of normal-based confidence intervals, and the Exposure-
Design that aims to increase precision of this estimator in various settings of interest.

When employing this design in practice, we recommend that the experimenter
choose the value of the trade-off parameter φ by running simulations of the experiment
using available models of the outcomes when possible. When this is not possible, we
find in our simulations that setting φ ≈ 1/4 typically yields improvements in the
precision of the ERL estimator over the previously correlation clustering design of
Pouget-Abadie et al. (2019) where φ = 1/(n−1). We suspect that in most settings of
interest, the ERL estimator will enjoy increased precision under any treatment design
which (either explicitly or implicitly) ensures that exposures have large variance and
are decorrelated.

There are several open questions suggested by this work. Answering any of the
following methodological questions around the bipartite experimental framework will
increase its relevance and applicability in practice.

• Improved Designs: Construct a design such that consistency and asymptotic
normality of the ERL estimator require weaker assumptions on the underlying
bipartite graph. Our current asymptotic analysis (consistency and asymptotic
normality in Theorems 4.5 and 4.7, respectively) holds for a large class of de-
signs, which requires stronger assumptions on the underlying bipartite graph.
The proposed Exposure-Design achieves improved empirical performance for
more dense bipartite graphs; however, it is heuristically motivated and there is
room for improved designs with strong theoretical guarantees. A design which
provably achieves even consistency under weaker conditions on the bipartite
graph will likely result in a new distributional discrepancy formulation and
sampling algorithm, thus constituting a major breakthrough.

• Beyond Linear Response: Develop methods for valid inference in bipartite
experiments which do not require the linear exposure-response assumption. All
methodology presented here relies upon the linear exposure-response assump-
tion. A key question is to understand what sort of estimation and inference
is possible under a general response function. For example, variance estima-
tion under such general responses seems to require very different techniques
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than those presented here, as they heavily rely on the parametric form of the
response.

• Misspecified Bipartite Graphs: Develop estimation and inference techniques
that are robust to misspecification in the bipartite graph. This work assumes that
the bipartite graph is known to the experimenter. However, this assumption
seems suspect in many applications where the bipartite graph may be con-
structed from historical data. Constructing designs and estimators which are
(together) robust to minor misspecifications in the bipartite graph would greatly
improve the applicability of the framework to practitioners. The results in Sävje
(2021) regarding estimation of treatment effects under a misspecified exposure
mapping might extend to this setting, but that remains to be shown.
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Appendix A

Appendix for Gram–Schmidt Walk
Design

A.1 Analysis of the Gram–Schmidt Walk Algorithm

In this section, we restate the Gram–Schmidt Walk algorithm of Bansal et al. (2019)
and present our analysis of the algorithm. We analyze the Gram–Schmidt Walk
algorithm under more general conditions than what we consider in our analysis of
the GSW-Design. At the end of the section, we discuss how the analysis of the
Gram–Schmidt Walk algorithm extends to the GSW-Design.

We begin by restating the algorithm and introducing notation that will be used
in the proofs. Next, we describe a formal connection to the Gram–Schmidt orthog-
onalization process which is also used in our proofs. We then provide proofs of the
covariance bound (Theorem 2.12) and the subgaussian concentration (Theorem 2.19)
of the Gram–Schmidt Walk algorithm. Finally, we discuss the extension of this anal-
ysis to the GSW-Design.

A.1.1 Gram–Schmidt Walk algorithm

In this section, we restate the Gram–Schmidt Walk algorithm using more detailed
notation. This more detailed notation contains explicit references to the iteration
index and will be used in the proofs in this supplement. Algorithm 5 below is the
Gram–Schmidt Walk algorithm of Bansal et al. (2019). Randomizing the choice
of pivots is not necessary for the algorithm or the analysis presented here, so we
defer randomization of pivots to the discussion of the Gram–Schmidt Walk design in
Section A.1.5. The algorithm presented in Section 4.6 sets the initial point z1 = 0.

We remark on some of the differences between the notation in Algorithm 5 here
and the pseudo-code presented in the main body of Chapter 2. First, the Gram–
Schmidt Walk algorithm takes as input arbitrary vectors b1, b2, . . . bn ∈ Rm. For
purposes of analysis, we often assume that the `2 norms of these input vectors is
at most 1. Second, in this version, which is identical to the algorithm developed
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Algorithm 5: Gram–Schmidt Walk
Input : Vectors b1, b2, . . . bn ∈ Rm arranged as columns in the matrix B

and an initial point z1 ∈ [−1, 1]n

Output: z ∈ {±1}n
1 Set iteration index t← 1 and alive set A1 ← [n].
2 Set the first pivot p0 ← n
3 while At 6= ∅ do
4 if pt−1 /∈ At then
5 Set the pivot pt to the largest index in At.
6 else
7 pt ← pt−1

8 end
9 Compute the step direction

ut ← arg min
u∈U

‖Bu‖,

where U is the set of all u ∈ Rn such that u(pt) = 1 and u(i) = 0 for all
i /∈ At.

10 Set δ+
t ← |max ∆| and δ−t ← |min ∆| where

∆ = {δ ∈ R : zt + δut ∈ [−1, 1]n}.
11 Set the step size δt at random according to

δt ←

{
δ+
t with probability δ−t /(δ

+
t + δ−t ),

−δ−t with probability δ+
t /(δ

+
t + δ−t ).

12 Update the fractional assignment zt+1 ← zt + δtut
13 Update set of alive units At+1 ← {i ∈ [n] | |zt(i)| < 1}
14 Increment the iteration index t← t+ 1

15 end
16 return z ← the final iterate zT+1
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by Bansal et al. (2019), we do not choose the pivots at random. In fact, the only
source of randomness in Algorithm 5 is the choice of step size δt at each iteration. In
Section A.1.5, we demonstrate that selecting pivots uniformly at random from At is
equivalent to randomly permuting the input order of the input vectors and running
Algorithm 5. Finally, the notation presented here contains more reference to iteration
indices. In particular, the notation of the pivot unit pt, the alive set At, and the choice
of update steps δ+

t , δ
−
t all feature the iteration index in the subscript. We also use

the notation that ut(i) denotes the ith coordinate of the vector u at time t.
We denote the (random) number of iterations by T . We now introduce a notational

convention which improves the clarity of some further analysis. Because the number
of iterations T is always at most n by Lemma 2.10, we may suppose that the algorithm
runs for exactly n iterations and that for iterations t > T , we set the update direction
ut = 0 and the step size δt = 0. The same vector z is returned and the output
distribution of the algorithm is unchanged. We remark that this convention is used
sparingly throughout the analysis and does not change the algorithm.

The concept of pivot phases was central to the analysis in Bansal et al. (2019) and
it remains a central part of the analysis presented here as well. For each unit i ∈ [n],
we define the pivot phase Si to be the set of iterations for which unit i is the pivot,
i.e.

Si = {t : pt = i}.

During a particular run of the algorithm, the pivot phase Si may be empty if unit i
is not chosen as a pivot unit during that run.

During the course of the algorithm, a unit i ∈ [n] is said to be alive if |zt(i)| < 1

and frozen otherwise. This is the convention is used by Bansal et al. (2019) and
it reflects that fact that once a unit is frozen, its fractional assignment becomes
integral and it is no longer updated. The set At is referred to as the alive set because
it contains all alive units at the beginning of iteration t. We refer to the vectors
b1, b2, . . . bn as the input vectors. We may slightly abuse our terminology and call an
input vector bi alive or frozen when we mean that the corresponding unit i is alive or
frozen.

We say that a unit i is decided by the algorithm when it is either selected as the
pivot (Lines 2 or 5) or frozen without being chosen as the pivot (Line 12). Throughout
the proofs below, we often condition on the previous random decisions made by the
algorithm. We use ∆i to denote all the random decisions made by the algorithm up
to and including when unit i was decided by the algorithm. There is, however, some
care to be taken in this definition to distinguish between units which are chosen as
pivots and those which are not. If i is chosen as a pivot at the beginning of iteration
t, then ∆i includes all previous choices of step sizes δ1 . . . δt−1. If i is frozen at the end
of iteration t without being chosen as the pivot, then ∆i includes all choices of step
sizes δ1 . . . δt. Other types of conditioning will be presented throughout the proofs as
the needs arise.

120



A.1.2 Connection to Gram–Schmidt orthogonalization

A key aspect in our analysis of the Gram–Schmdit Walk algorithm is a Gram–Schmidt
orthogonalization applied to a random re-ordering of the input vectors. We use the
randomized Gram–Schmidt orthogonalization to obtain the tight bounds on the co-
variance matrix and the subgaussian constant in Theorems 2.12 and 2.19, respectively.
In this section, we describe this connection in detail, providing additional notation
and several technical lemmas which will be used in the proofs of Theorems 2.12 and
2.19.

Before continuing, we make two remarks regarding the randomized Gram–Schmidt
orthogonalization. First, we emphasize that this re-ordering and orthogonalization is
only for the purposes of analysis and is not executed by the algorithm. We also remark
that although Bansal et al. (2019) discuss how the Gram–Schmidt Walk algorithm
was inspired by Gram–Schmidt orthogonalization, an explicit connection is not made
in that paper. This is one of the technical differences in our analysis which allow us
to obtain tighter bounds.

We begin this discussion by first describing the randomized re-ordering of the input
vectors and then defining the Gram–Schmidt Orthogonalization processes applied to
this re-ordering. Let us introduce the notation of the re-ordering. The inputs vectors
b1, b2, . . . bn ∈ Rm will be re-ordered as

bσ(1), bσ(2), . . . bσ(n) ,

where σ is a bijection mapping positions in the re-ordering to the units. Formally,
σ : [n] → [n] and to avoid confusion in this notation, we reserve the symbol r for a
position in the re-ordering and the symbol i for a unit. In this way, we write σ(r) = i

to mean that the rth position in the re-ordering is occupied by unit i. We may also
refer to the position of a specific unit in the re-ordering using the inverse function σ−1.
That is, σ−1(i) = r means that the unit i is assigned to position r in the re-ordering.

The re-ordering we consider is random and it is defined by the random choices
made in the algorithm. Recall that a unit i is decided by the algorithm when it is
either selected as the pivot (Lines 2 or 5) or frozen without being chosen as the pivot
(Line 12). The ordering of the units σ(1),σ(2), . . .σ(n) will be the reverse order in
which they are decided, breaking ties arbitrarily. In this way, as the algorithm decides
units at each iteration, the randomized re-ordering is determined in reverse order. For
example, the first unit to be decided is the first pivot unit p1 so that σ(n) = p1 = n. If
a single unit j 6= p1 is frozen in the first iteration, then this is the next unit decided by
the algorithm, in which case it is second to last in the re-ordering, i.e. σ(n− 1) = j.
On the other hand, if only the pivot p1 is frozen in the first iteration, the next unit
decided by the algorithm is the next pivot, which is p2. In this case, σ(n− 1) = p2.

Next, we introduce the Gram–Schmidt orthogonalization process on this random-
ized re-ordering of the input vectors. The Gram–Schmidt orthogonalization process
is a method to construct a sequence of orthonormal vectors which form a basis for
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the span of a given set of vectors. For our problem at hand, we denote this sequence
of orthonormal basis vectors by

wσ(1),wσ(2), . . .wσ(n).

They are recursively defined by the Gram–Schmidt orthogonalization process

wσ(1) =
bσ(1)

‖bσ(1)‖
and wσ(r) =

bσ(r) −Arbσ(r)∥∥bσ(r) −Arbσ(r)

∥∥ for r = 2, . . . n,

where Ar =
∑

s<rwσ(s)w
ᵀ
σ(s) is the projection onto the span of the first r − 1 input

vectors bσ(1) . . . bσ(r−1). Because the random re-ordering of the input vectors is de-
termined by the random choices of δ1 . . . δn in the algorithm, the random sequence
wσ(1) . . .wσ(n) is also determined by the random choices made by the algorithm. Re-
gardless of the randomization, this sequence of vectors forms an orthonormal basis for
the span of the input vectors. Moreover, while the vector wσ(r) depends on the set of
vectors {bσ(1), . . . , bσ(r−1)}, it does not depend on their order. For further reading on
the Gram–Schmidt orthogonalization process, we refer readers to Chapter 4 of Strang
(2009).

The main benefit of using this Gram–Schmidt orthogonalization process is that we
can cleanly analyze the behavior of the algorithm within pivot phases. In particular,
it provides a way to partition the span of the input vectors into orthogonal subspaces
V1, V2, . . . Vn corresponding to each of the n units. These subspaces are defined by the
algorithm’s random choices within the corresponding unit’s pivot phase. We begin
by defining the subspaces for units that are chosen as pivots. Let i be a unit which
is chosen as pivot and assume it has position r = σ−1(i) in the reordering so that
the k + 1 vectors which are decided during this pivot phase appear in the ordering
as bσ(r−k), bσ(r−k+1), . . . bσ(r). The subspace Vi ⊂ Rm is defined to be the span of
the vectors bσ(r−k), bσ(r−k+1), . . . bσ(r) after they have been projected orthogonal to
bσ(1), bσ(2), . . . , bσ(r−k−1). As the set {σ(1), . . . ,σ(r − k − 1)} is determined at this
time, the projection is well-defined. The vectors

wσ(r−k),wσ(r−k+1), . . . ,wσ(r)

form an orthonormal basis for the subspace Vi and the projection matrix onto this
subspace is

P i =
k∑
s=0

wσ(r−s)w
ᵀ
σ(r−s).

If a unit i is never chosen as a pivot unit, then Vi is the zero subspace and so the pro-
jection matrix Pi is the zero matrix. We remark that these subspaces and projection
matrices are the ones referenced in the proof sketches of Theorems 2.12 and 2.19.

The following lemma follows directly from the definition of the subspaces but may
also be verified by orthonormality of the vector sequence produced by Gram–Schmidt
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orthogonalization.

Lemma A.1. The subspaces are V1, V2, . . . Vn are orthogonal and their union is
span{b1, b2, . . . bn}. Equivalently, the corresponding projection matrices P 1 . . .P n

satisfy
n∑
i=1

P i = P ,

where P is the projection matrix onto span{b1, b2, . . . bn}.

Next, we will show that the fractional balance update But is contained in the
subspace corresponding to the current pivot, Vpt . We will show a stronger property,
but in order to make these statements precise, we need additional notation which
connects an iteration t with the re-ordered positions of the units that have already
been decided during in the current pivot phase. We define `t and gt to be the least
and greatest re-ordering positions that were decided during the current pivot phase
before Line 9 at iteration t. The first unit to be decided in any pivot phase is the pivot
unit. Thus the greatest re-ordering position of any unit which was decided during
the current pivot phase is gt = σ−1(pt). Note that when we arrive at Line 9, At \ pt
is the set of units which have not yet been decided. Thus, these are the units which
will appear earliest in the re-ordering (although their ordering is not yet determined)
and so we have that `t = |At \pt|+1 = |At|. In the first iteration of a pivot phase, we
have `t = gt because only the pivot has been decided before Line 9 at this iteration.

Using this notation, at Line 9 of iteration t, the input vectors whose units have
been decided during the current pivot phase are

bσ(`t), bσ(`t+1), . . . bσ(gt).

The next lemma demonstrates that the fractional update But is the projection of
the pivot onto the subspace spanned by wσ(`t),wσ(`t+1), . . .wσ(gt).

Lemma A.2. At each iteration t, we can writeBut in the orthonormal basis wσ(1) . . .wσ(n)

as

But =

gt∑
r=`t

〈
wσ(r), bpt

〉
wσ(r).

Proof. Recall that the step direction ut is determined by a least squares problem.
That is, the undecided coordinates of the step direction, ut(At\pt), are the minimizers
of the least squares program

ut(At \ pt) = arg min
ui:i∈At\pt

∥∥∥bpt +
∑

i∈At\pt

uibi

∥∥∥2

.

Because the step direction is the minimizer, it must satisfy the normal equations

But = bpt −Atbpt ,
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where At is the projection matrix onto the span of the alive vectors which are not
the pivot. That is, bi for i in At \ pt = {σ(1), . . . ,σ(`t) − 1}. By the construction
of the re-ordering and the Gram–Schmidt orthogonalization, we have that At =∑

s<`t
wσ(s)w

ᵀ
σ(s). Writing the fractional balance update But in the orthonormal

basis, we have that

But =
n∑
r=1

〈wσ(r),But〉wσ(r) (orthonormal basis)

=
n∑
r=1

〈wσ(r), bpt −Atbpt〉wσ(r) (normal equations)

=
n∑
r=1

[
〈wσ(r), bpt〉 − 〈wσ(r),Atbpt〉

]
wσ(r) (linearity)

=
n∑
r=1

[
〈wσ(r), bpt〉 − 〈Atwσ(r), bpt〉

]
wσ(r). (projection matrix, Aᵀ

t = At)

We now examine each term in this sum. If r < `t thenAtwσ(r) = wσ(r) because wσ(r)

is a vector in the subspace associated with the projection At. Thus, the two terms
in the bracket are the same, so the terms corresponding to r < `t are zero and do
not contribute to the sum. If r ≥ `t, then by the construction of the re-ordering and
Gram–Schmidt orthogonalization, wσ(r) is orthogonal to the subspace corresponding
to At and so Atwσ(r) = 0. This means that for `t ≤ r ≤ gt, the second term in the
brackets is zero, and only the first term in brackets contributes to the sum. On the
other hand, if r > gt, then by the re-ordering and Gram–Schmidt orthogonalization,
wσ(r) is orthogonal to bσ(gt) = bpt . In this case, both terms in the brackets are zero
and the terms corresponding to r > gt contribute nothing to the sum. Thus, we have
shown that

But =

gt∑
r=`t

〈
wσ(r), bpt

〉
wσ(r).

A.1.3 Covariance bound (Theorem 2.12)

This section contains a proof of an extended version of the covariance bound in
Theorem 2.12. We begin by deriving a form of the covariance matrix of the assignment
vector in terms of the update quantities in the algorithm.

Lemma A.3. The covariance matrix of the assignment vector is given by

Cov(z) = E
[ T∑
t=1

δ2
tutu

ᵀ
t

]
.
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Proof. First, observe that

Cov(z) = E[zz
ᵀ
]− E[z]E[z]

ᵀ
= E[zz

ᵀ
]− z1z

ᵀ
1

where the second equality uses E[z] = z1, which in a consequence of the martingale
property (Lemma 2.7). By the update rule zt+1 ← zt + δtut,

zt+1z
ᵀ
t+1 = (zt + δtut)(zt + δtut)

ᵀ
= ztz

ᵀ
t + δt

(
utz

ᵀ
t + ztu

ᵀ
t

)
+ δ2

tutu
ᵀ
t .

Iteratively applying this over all iterations t ∈ {1, 2, . . .} and using that the returned
vector is z = zT+1, we have that

zz
ᵀ

= zT+1z
ᵀ
T+1 = z1z

ᵀ
1 +

T∑
t=1

δt
(
utz

ᵀ
t + ztu

ᵀ
t

)
+

T∑
t=1

δ2
tutu

ᵀ
t .

Substituting this expression of zzᵀ into E[zzᵀ] in the earlier covariance calculation,
we obtain that

Cov(z) = E

[
T∑
t=1

δ2
tutu

ᵀ
t

]
+ E

[
T∑
t=1

δt
(
utz

ᵀ
t + ztu

ᵀ
t

)]
(A.1)

We will now show that the last term is zero because the step size δt is zero in
expectation. By linearity of expectation and using the convention that the algorithm
runs for n iterations with δt = 0 and ut = 0 for t > T ,

E

[
T∑
t=1

δt
(
utz

ᵀ
t + ztu

ᵀ
t

)]
=

n∑
t=1

E
[
δt
(
utz

ᵀ
t + ztu

ᵀ
t

)]
For a fixed iteration t, consider the individual term E[δt(utz

ᵀ
t + ztu

ᵀ
t )] in the sum

above. Observe that if we condition on all previous random decisions made by the
algorithm before step size δt is chosen (i.e. choices of step sizes δ1 . . . δt−1), then the
step direction ut and fractional assignment zt are both determined, so that utz

ᵀ
t+ztu

ᵀ
t

is a deterministic quantity. In this way, δt is conditionally independent of utz
ᵀ
t +ztu

ᵀ
t

conditioned on all previous random decisions made by the algorithm. Using the fact
that the expected step size δt is zero, we have that

E[δt
(
utz

ᵀ
t + ztu

ᵀ
t

)
| δ1 . . . δt−1] =

(
utz

ᵀ
t + ztu

ᵀ
t

)
· E[δt | δ1 . . . δt−1] = 0

for all iterations t. By the law of total expectation, E[δt(utz
ᵀ
t + ztu

ᵀ
t )] = 0 and so

that the second term in (A.1) is zero.

Next, we prove a lemma stating that the expected sum of the squared step sizes in
the remainder of a pivot phase is not too large in expectation. To do this, we introduce
notation that connects a position in the re-ordering to the subsequent iterations in a
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pivot phase. For each position r in the re-ordering, we define

Lr = {t : `t ≤ r ≤ gt}.

The set Lr allows us to discuss what happens in the remaining iterations of a pivot
phase after the unit in position r has been decided. For example, if a unit i is chosen
as the pivot and assigned to position r, then Lr is the entire pivot phase Si. If a non-
pivot unit i is frozen and assigned to position r, then Lr are the remaining iterations
in the pivot phase. Note that Lr may be empty if a non-pivot unit is frozen along
with pivot at the last iteration of the pivot phase. We are now ready to state a lemma
on the expected sum of the squared step sizes throughout the remainder of a pivot
phase.

Lemma A.4. For each r ∈ [n], conditional on the random decisions made up until
unit σ(r) is decided, the expected sum of squared step sizes in the remainder of its
pivot phase is at most one. That is, for each unit i ∈ [n] with re-ordering position
r = σ−1(i),

E

[∑
t∈Lr

δ2
t

∣∣∣∣∣∆σ(r)

]
≤ 1.

Proof. Because only one pivot phase is being considered, we drop the iteration sub-
scripts here and write the pivot as p. Recall that ∆σ(r) denotes all the random
decisions made by the algorithm up to and including when unit i was decided by
the algorithm. If Lr is empty, then the statement is trivially true. Otherwise, Lr is
a (random) contiguous set of iterations t0, t0 + 1, . . . t0 + k, where t0 + k is the last
iteration in the pivot phase. Because the pivot phase terminates when the pivot p is
frozen, |zt0+k(p)| = 1. It follows that

1− zt0(p)2 = zt0+k(p)
2 − zt0(p)2 (|zt0+k(p)| = 1)

=
k−1∑
s=0

[
zt0+s+1(p)2 − zt0+s(p)

2
]

(telescoping sum)

=
k−1∑
s=0

[
(zt0+s(p) + δt0+sut0+s(p))

2 − zt0+s(p)
2
]

(update rule)

=
k−1∑
s=0

[
δ2
t0+sut0+s(p)

2 + 2δt0+sut0+s(p)zt0+s(p)
]

(cancelling terms)

Taking conditional expectations of both sides and using linearity of expectation, we
have that

1− zt0(p)2 = E

[∑
t∈Lr

δ2
t

∣∣∣∣∣∆σ(r)

]
+ 2E

[∑
t∈Lr

δtut(p)zt(p)

∣∣∣∣∣∆σ(r)

]
, (A.2)
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because the left hand side is a deterministic quantity under this conditioning. We
now seek to show that the second term on the right hand side is zero. To this end,
observe that we may extend the sum from iterations t ∈ Lr to all remaining iterations
because ut(p) = 0 for iterations t after the current pivot phase, i.e.,

E

[∑
t∈Lr

δtut(p)zt(p)

∣∣∣∣∣∆σ(r)

]
= E

[∑
t≥t0

δtut(p)zt(p)

∣∣∣∣∣∆σ(r)

]
=
∑
t≥t0

E
[
δtut(p)zt(p)

∣∣∣∆σ(r)

]
.

We now show that each term E[δtut(p)zt(p) |∆σ(r)] is zero for each t. Suppose that
we further condition on all previous random decisions made by the algorithm before
step size δt is chosen. In this case, the quantity ut(p)zt(p) is completely determined
and so δt is independent of ut(p)zt(p). Moreover, the step size has mean zero, as
shown in the proof of Lemma 2.7. Thus, for t ≥ t0,

E[δtut(p)zt(p) | δ1 . . . δt−1] = ut(p)zt(p) · E[δt | δ1 . . . δt−1] = 0

By the law of total expectation, it follows that the term E[δtzt(p) |∆σ(r)] is zero for
t ≥ t0. Thus, the second term in (A.2) is zero and so we have that

E

[∑
t∈Lr

δ2
t

∣∣∣∣∣∆σ(r)

]
= 1− zt0(p)2 ≤ 1,

where the inequality follows from zt0(p) ∈ (−1, 1).

At this point, we are ready to prove the covariance bound.

Theorem 2.12*. If all input vectors b1 . . . bn have `2 norm at most one, then the
covariance matrix of the vector of imbalances Bz is bounded in the Loewner order by
the orthogonal projection onto the subspace spanned by the columns of B:

Cov(Bz) � P = B
(
B

ᵀ
B
)†
B

ᵀ
,

where we recall that A† denotes the pseudoinverse of the matrix A.

Proof. To prove the matrix inequality in the statement of the theorem, we seek to
show that

v
ᵀ

Cov(Bz)v ≤ vᵀPv for all v ∈ Rm

Using Lemma A.3 for the form of Cov(z) and linearity of expectation, we have that

v
ᵀ

Cov(Bz)v = v
ᵀ
B Cov(z)B

ᵀ
v = v

ᵀ
B E

[
T∑
t=1

δ2
tutu

ᵀ
t

]
B

ᵀ
v = E

[
T∑
t=1

δ2
t 〈But,v〉2

]
.
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Thus, we seek to show that for all v ∈ Rm,

E

[
T∑
t=1

δ2
t 〈But,v〉2

]
≤ vᵀPv.

Next, we compute an upper bound on the quadratic forms in the sum. For each
iteration t,

〈But,v〉2 =

〈
gt∑
r=`t

〈
wσ(i), bpt

〉
wσ(i),v

〉2

(Lemma A.2)

=

(
gt∑
r=`t

〈
wσ(r), bpt

〉
〈wσ(r),v〉

)2

(linearity)

≤

(
gt∑
r=`t

〈wσ(r), bpt〉2
)(

gt∑
r=`t

〈wσ(r),v〉2
)

(Cauchy–Schwarz)

≤ ‖bpt‖
2 ·

(
gt∑
r=`t

〈wσ(r),v〉2
)

(wσ(r) are orthonormal)

≤

(
gt∑
r=`t

〈wσ(r),v〉2
)
. (by assumption, ‖bpt‖

2 ≤ 1)

Using this upper bound, we obtain an upper bound for the expected quantity of
interest,

E

[
T∑
t=1

δ2
t 〈But,v〉2

]
≤ E

[
T∑
t=1

δ2
t

(
gt∑
r=`t

〈wσ(r),v〉2
)]

(from above)

= E

[
n∑
r=1

〈wσ(r),v〉2
∑
t∈Lr

δ2
t

]
(rearranging terms)

=
n∑
r=1

E

[
〈wσ(r),v〉2

∑
t∈Lr

δ2
t

]
(linearity of expectation)

We examine each of the terms in this sum. Fix a position r in the random re-
ordering. Suppose that we further condition on ∆σ(r), which contains all random
decisions made by the algorithm up to and including when unit σ(r) was decided by
the algorithm. Under this conditioning, the vector wσ(r) is completely determined
and so the quantity 〈wσ(r),v〉2 is also completely determined. In this way, the random
term

∑
t∈Lr

δ2
t is conditionally independent of 〈wσ(r),v〉2 given ∆σ(r). Thus, we have
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that

E

[
〈wσ(r),v〉2

∑
t∈Lr

δ2
t

∣∣∣∣∣∆σ(r)

]
= 〈wσ(r),v〉2 · E

[∑
t∈Lr

δ2
t

∣∣∣∣∣∆σ(r)

]
≤ 〈wσ(r),v〉2,

where the equality is due to conditional independence and the inequality follows from
Lemma A.4. Using iterated expectation, it follows that

E

[
〈wσ(r),v〉2

∑
t∈Lr

δ2
t

]
≤ E

[
〈wσ(r),v〉2

]
.

Substituting this bound and using linearity of expectation yields

E

[
T∑
t=1

δ2
t 〈But,v〉2

]
≤

n∑
r=1

E
[
〈wσ(r),v〉2

]
= v

ᵀ E

[
n∑
r=1

wσ(r)w
ᵀ
σ(r)

]
v = v

ᵀ
Pv ,

where the last equality follows from the fact that the vectors wσ(1),wσ(2), . . . ,wσ(n)

form an orthonormal basis for the span of input vectors, thus
∑n

r=1wσ(r)w
ᵀ
σ(r) = P

holds deterministically, regardless of the randomized re-ordering.

A.1.4 Subgaussian bound (Theorem 2.19)

In this section, we prove an extended version of the subgaussian concentration in-
equality of Theorem 2.19. We begin by presenting the main technical inequality
(Lemma A.5) which is stated in terms of operator monotonicity and proved using
basic calculus. Next, we present Lemma A.6, which analyzes the behavior of the
Gram–Schmidt Walk algorithm in one pivot phase using a backwards induction style
argument. Finally, we prove the subgaussian concentration inequality by showing
how we may repeatedly apply Lemma A.6.

The main technical inequality is stated in terms of operator monotonicity, which
we briefly describe here. Let D be a set of n-by-n symmetric matrices. A real-valued
matrix function f : D → R is said to be operator monotone increasing if

A,B ∈ D with A � B ⇒ f(A) ≤ f(B).

Intuitively, a real-valued matrix function f is monotone increasing if “larger” matrices
(as determined by the Loewner order) are assigned larger values. We say that f is
operator monotone decreasing ifA � B implies instead that f(A) ≥ f(B). Although
there is a well developed theory of operator monotonicity, we use only very basic facts
here which are mostly self contained. For more information on operator monotonicity,
we refer readers to Chapter 5 of Bhatia (1997).
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Lemma A.5. For all x ∈ [−1, 1] the function

fx

(
α η

η β

)
= exp

(
−1

2
αβ

)[
1 + x

2
exp((1− x)η) +

1− x
2

exp(−(1 + x)η)

]
is operator monotone decreasing over the set of 2-by-2 positive semidefinite matrices.

Proof. Operator monotonicity of a function g : D → R is preserved under composition
with any monotone increasing h : R → R. Using this and observing that fx takes
positive values for x ∈ [−1, 1], we have that fx is operator monotone decreasing
if and only if log fx is operator monotone decreasing. Moreover, a differentiable
function g : D → R is operator monotone decreasing if and only if −∇g(A) is positive
semidefinite for all A ∈ D. The function fx under consideration is differentiable and
thus, to prove the lemma, it suffices to show that

−∇ log fx

(
α η

η β

)
is positive semidefinite when the 2-by-2 input matrix is positive semidefinite, i.e.,
α, β ≥ 0 and αβ ≥ η2.

We begin by defining the shorthand

ψx(η) = log

[
1 + x

2
exp((1− x)η) +

1− x
2

exp(−(1 + x)η)

]
for the log of the bracketed term in the definition of fx. Using this, we may write the
function log fx as

log fx

(
α η

η β

)
= ψx(η)− 1

2
αβ.

From the above expression, it is clear that ∂α log fx = −β/2, ∂β log fx = −α/2, and
∂η log fx = ∂ηψx. Thus, the matrix gradient may be computed:

−2∇ log fx =

(
β −∂ηψx(η)

−∂ηψx(η) α

)
.

Recall that when computing the matrix gradient, we scale the off diagonals by 1/2, as
they appear twice in the trace inner product. We seek to show that the matrix above
is positive semidefinite when the input matrix is positive semidefinite. Because the
matrix above is 2-by-2, proving that it is positive semidefinite is equivalent to showing
the three inequalities α, β ≥ 0 and αβ ≥ (∂ηψx(η))2. Because the input matrix is
positive semidefinite, we already have that α, β ≥ 0. To show the final inequality, we
show in the next part of the proof that η2 ≥ (∂ηψx(η))2. Because the input matrix
already satisfies αβ ≥ η2, this will imply the final inequality.
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So for the final part of the proof, we focus on showing the inequality

(∂ηψx(η))2 ≤ η2 for all x ∈ [−1, 1].

To this end, we use an enveloping argument to show that |∂ηψx(η)| ≤ |η| for all
x ∈ [−1, 1]. We begin by computing the first and second derivatives of ψx(η). First,
we rewrite the function ψx(η) as

ψx(η) = log

[
1 + x

2
exp (1− x)η +

1− x
2

exp−(1 + x)η

]
= log

[
1

2

(
eη−xη + xeη−xη + e−η−xη − xe−η−xη

)]
= log

[
e−xη

2
(eη + xeη + e−η − xe−η)

]
= log

[
1

2
(eη + xeη + e−η − xe−η)

]
− xη

= log[cosh(η) + x sinh(η)]− xη.

Next, we compute the derivative ∂ηψx(η) by using chain rule and derivatives of log

and hyperbolic trigonometric functions:

∂ηψx(η) =
sinh(η) + x cosh(η)

cosh(η) + x sinh(η)
− x.

Finally, we compute the second derivative of ψx(η) using the above result, the quotient
rule, and derivatives for the hyperbolic functions:

∂2
ηψx(η) = 1−

(
sinh(η) + x cosh(η)

cosh(η) + x sinh(η)

)2

= 1− (∂ηψx(η) + x)2.

We now establish the basis of our enveloping argument. That is, we show that the
second derivative of ψx(η) is bounded above and below by

0 ≤ ∂2
ηψx(η) ≤ 1 for all η ∈ R and x ∈ [−1, 1].

The upper bound is immediate from the earlier expression, as ∂2
ηψx(η) = 1−(∂ηψx(η)+
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x)2 ≤ 1. The lower bound is a consequence of x ∈ [−1, 1]. To see this, observe that

∂2
ηψx(η) = 1−

(
sinh(η) + x cosh(η)

cosh(η) + x sinh(η)

)2

≥ 0

⇔ (cosh(η) + x sinh(η))2 ≥ (sinh(η) + x cosh(η))2

⇔ cosh2(η) + x2 sinh2(η) ≥ sinh2(η) + x2 cosh2(η)

⇔ cosh2(η)− sinh2(η) ≥ x2(cosh2(η)− sinh2(η))

⇔ 1 ≥ x2

Now, we make our enveloping argument. First, we observe that ∂ηψx(0) = 0. Next,
for η > 0, we can bound the value of ∂ηψx(η) from above and below by

∂ηψx(η) = ∂ηψx(0) +

∫ η

y=0

∂2
ηψx(y)dy ≤ 0 +

∫ η

y=0

1dy = η

∂ηψx(η) = ∂ηψx(0) +

∫ η

y=0

∂2
ηψx(y)dy ≥ 0 +

∫ η

y=0

0dy = 0.

Written together, these inequalities state that 0 ≤ ∂ηψx(η) ≤ η for values η ≥ 0. A
similar enveloping argument shows that −η ≤ ∂ηψx(η) ≤ 0 for values η ≤ 0. Putting
these two together, we have that |∂ηψx(η)| ≤ |η| for all η ∈ R and x ∈ [−1, 1], as
desired.

Lemma A.6. Let p be a unit that is chosen as the pivot and let ∆p denote all random
decisions made by the algorithm up until the beginning of pivot phase p. If ‖bp‖ ≤ 1,
then for all v ∈ Rm,

E

[
exp

(∑
t∈Sp

δt〈But,v〉 −
1

2
‖P pbp‖2 · ‖P pv‖2

) ∣∣∣∣∣∆p

]
≤ 1,

where Sp is the set of iterations for which p is the pivot.

Proof. Let tp be the iteration at which p is first chosen to be the pivot. This iteration
tp is a deterministic quantity conditioned on ∆p.

We begin by describing a convention which we adopt for the purposes of this
analysis. Recall that the number of iterations in a pivot phase is generally a ran-
dom quantity; however, the number of iterations in a pivot phase is at most n by
Lemma 2.10. In fact, because tp − 1 iterations have already occurred, the number
of iterations in the pivot phase Sp is at most n − tp + 1. For the purposes of this
proof, we adopt a convention which deterministically fixes the number of iterations
within the pivot phase to be n − tp + 1. We adopt this convention because fixing
the number of iterations in a pivot phase to be a deterministic quantity simplifies
our backwards induction style argument. Once the pivot is frozen at iteration t, all
remaining iterations of the pivot phase s > t have step size zero, i.e. δs = 0. In this
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way, the fractional assignment is not updated in the remainder of the pivot phase
after the pivot is frozen and thus this convention does not change the behavior of the
algorithm. We emphasize again that this convention is for purposes of the current
analysis and does not change the algorithm itself.

Using this convention and writing the iterations in the pivot phase as Sp =

{tp . . . n}, we seek to show that

E

[
exp

(
n∑

t=tp

δt〈But,v〉 −
1

2
‖P pbp‖2 · ‖P pv‖2

) ∣∣∣∣∣∆p

]
≤ 1. (A.3)

All expectations in the remainder of the proof are conditioned on ∆p and so we drop
this notation.

We now rewrite the terms in the exponent by using the sequence of orthonormal
basis vectors produced by the Gram–Schmidt orthogonalization process, as described
in Section A.1.2. Suppose that the pivot unit has position r = σ−1(p) in the reordering
so that the k + 1 vectors which are decided during this pivot phase appear in the
ordering as

bσ(r−k), bσ(r−k+1), . . . bσ(r),

where the pivot vector is the last in this re-ordering, i.e., σ(r) = p, and so bσ(r) = bp.
The corresponding basis vectors produced by the Gram–Schmidt orthogonalization
are

wσ(r−k),wσ(r−k+1), . . .wσ(r).

We now define a way to partition these reordering positions according to the
iterations when they were decided. For each iteration t = tp, . . . n in this pivot phase,
we define Qt to be the reordering positions of the units that are frozen during the
fractional assignment update in Line 12 during iteration t. By our convention, it may
happen that δt = 0 and in this case, Qt = ∅. We also define Qtp−1 = {gp} = {σ−1(p)},
which is the re-ordering index of the pivot. We remark that this reordering position
is deterministic given the conditioning ∆p and the subscript tp − 1 is chosen for
notational convenience. Note that the reordering positions are determined in the
order Qtp−1, Qtp , . . . Qn and this forms a partition of the reordering positions decided
in this pivot phase.

Lemma A.2 shows that for each iteration t,

But =
t−1∑

s=tp−1

∑
r∈Qs

〈wσ(r), bp〉wσ(r) and so 〈But,v〉 =
t−1∑

s=tp−1

∑
r∈Qs

〈wσ(r), bp〉〈wσ(r),v〉.

Recall that the projection matrix P p is defined as

P p =
n∑

s=tp−1

∑
r∈Qs

wσ(r)w
ᵀ
σ(r)
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and thus we have that

‖P pbp‖2 =
n∑

s=tp−1

∑
r∈Qs

〈wσ(r), bp〉2 and ‖P pv‖2 =
n∑

s=tp−1

∑
r∈Qs

〈wσ(r),v〉2

For notational convenience, for each reordering position r, let αr = 〈wσ(r), bp〉 and
βr = 〈wσ(r),v〉.

Substituting these terms into (A.3), we have that the desired inequality may be
written as

E

[
exp

(
n∑

t=tp

δt

t−1∑
s=tp−1

∑
r∈Qs

αrβr −
1

2

( n∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( n∑
s=tp−1

∑
r∈Qs

β2
r

))]
≤ 1.

We will prove this inequality using a backwards induction style argument. We use
the main technical inequality of Lemma A.5 to show that, conditioned on the first n−1

iterations, the expectation above is maximized when αr = βr = 0 for all r ∈ Qn. In
some sense, this is identifying the worst-case values that {(αr, βr) : r ∈ Qn} may take.
We then continue backwards and show that given the values of {(αr, βr) : r ∈ Qt}
for t < R, the values of {(αr, βr) : r ∈ ∪ns=RQs} which maximize the expectation are
αr = βr = 0.

We now proceed more formally. For each R = 0, 1, . . . n, we define the quantity

g(R) = E

[
exp

(( n∑
t=tp

δt

min{R,t−1}∑
s=tp−1

∑
r∈Qs

αrβr

)
− 1

2

( R∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( R∑
s=tp−1

∑
r∈Qs

β2
r

))]

Note that g(R) is similar to the expectation we are interested in bounding, except
that αr = βr = 0 for all r ∈ ∪s>RQs. Note that g(n) is exactly the expectation
that we seek to upper bound by 1. We prove this upper bound by establishing the
following chain of inequalities

g(n) ≤ g(n− 1) ≤ · · · ≤ g(tp) ≤ 1.

We prove this chain of inequalities in three steps. The first step is to establish
that g(n) ≤ g(n − 1). This inequality is the simplest one to establish because it
follows directly from the definition of g(R). In particular, observe that the term∑n

t=tp
δt
∑min{R,t−1}

s=tp−1

∑
r∈Qs

αrβr is the same for R = n and R = n− 1, while the term
1
2

(∑R
s=tp−1

∑
r∈Qs

α2
r

)
·
(∑R

s=tp−1

∑
r∈Qs

β2
r

)
is larger for R = n than for R = n− 1.

Thus, g(n) ≤ g(n− 1).
We now show the second chunk of inequalities: g(R) ≤ g(R−1) for tp < R ≤ n−1.

Before continuing, we show how to use the main technical inequality (Lemma A.5)
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to prove that for all R in this range,

E

[
exp

(( n∑
t=R+1

δt

R∑
s=tp−1

∑
r∈Qs

αrβr

)
− 1

2

( R∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( R∑
s=tp−1

∑
r∈Qs

β2
r

)) ∣∣∣∣∣∆R

]
(A.4)

≤ E

[
exp

(( n∑
t=R+1

δt

R−1∑
s=tp−1

∑
r∈Qs

αrβr

)
− 1

2

( R−1∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( R−1∑
s=tp−1

∑
r∈Qs

β2
r

)) ∣∣∣∣∣∆R

]
,

where ∆R denotes the step sizes, δtp , δtp+1, . . . δR, in addition to the previous ran-
domness in the algorithm denoted by ∆p. Under this conditioning, the values of
{(αr, βr) : r ∈ ∪Rs=tp−1Qs} are decided and the only random quantity in the expres-
sion above is

∑n
t=R+1 δt. We claim that this random variable is precisely

n∑
t=R+1

δt =

{
1− zR+1(p) with probability (1 + zR+1(p))/2

−(1 + zR+1(p)) with probability (1− zR+1(p))/2

To see this, observe that because the step direction satisfies ut(p) = 1 in the pivot
phase p and the update procedure is zt+1 ← zt + δtut,

zn(p) =
n∑

t=R+1

δtut(p)+zR+1(p) =
n∑

t=R+1

δt+zR+1(p) and thus
n∑

t=R+1

δt = zn(p)−zR+1(p).

Because zn(p) takes values ±1, we have that the sum
∑n

t=R+1 δt only takes two values.
Moreover, because all step sizes have mean zero, we have that E[

∑n
t=R+1 δt] = 0. This

determines the probabilities of each of the two values.
Because we know exactly the distribution of the random sum

∑n
t=R+1 δt, we may

derive the expectation in the left hand side of (A.4) exactly as

1 + zR+1(p)

2
exp

(
(1− zR+1(p))

R∑
s=tp−1

∑
r∈Qs

αrβr −
1

2

( R∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( R∑
s=tp−1

∑
r∈Qs

β2
r

))
(A.5)

+
1− zR+1(p)

2
exp

(
−(1 + zR+1(p))

R∑
s=tp−1

∑
r∈Qs

αrβr −
1

2

( R∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( R∑
s=tp−1

∑
r∈Qs

β2
r

))

We now demonstrate how this expectation may be recognized as the matrix function
appearing in Lemma A.5. Let A and AR be the 2-by-2 matrices given by

A =
R−1∑

s=tp−1

∑
r∈Qs

(
α2
r αrβr

αrβr β2
r

)
, AR =

∑
r∈QR

(
α2
r αrβr

αrβr β2
r

)
.
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These matrices are the sum of 2-by-2 positive semidefinite matrices and so they are
themselves positive semidefinite. Recall that the matrix function in Lemma A.5 is
defined for x ∈ [−1, 1] as

fx

(
α η

η β

)
= e−

1
2
αβ

[
1 + x

2
exp((1− x)η) +

1− x
2

exp(−(1 + x)η)

]
=

1 + x

2
exp
(

(1− x)η − 1

2
αβ
)

+
1− x

2
exp
(
−(1 + x)η − 1

2
αβ
)
.

Observe that the expectation in (A.5) is equal to fzR(p)(A +AR). By Lemma A.5,
the function is operator monotone decreasing over positive semidefinite matrices so
that

fzR(p)(A+AR) ≤ fzR(p)(A).

The proof of inequality (A.4) is completed by observing that fzR(p)(A) is equal to the
expectation on the right hand side of (A.4).

Now we are ready to show that g(R) ≤ g(R−1) for tp < R ≤ n−1. For notational
convenience, we define

XR = exp

(
R∑
t=tp

δt

t−1∑
s=tp−1

αrβr

)
.

By rearranging terms, applying iterated expectations, and using the inequality (A.4),
we have that

g(R)

= E

[
exp

(
n∑

t=tp

δt

min{R,t−1}∑
s=tp−1

∑
r∈Qs

αrβr −
1

2

( R∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( R∑
s=tp−1

∑
r∈Qs

β2
r

))]

= E

[
XR · exp

(
n∑

t=R+1

δt

R∑
s=tp−1

∑
r∈Qs

αrβr −
1

2

( R∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( R∑
s=tp−1

∑
r∈Qs

β2
r

))]

= E

[
XR · E

[
exp

(
n∑

t=R+1

δt

R∑
s=tp−1

∑
r∈Qs

αrβr −
1

2

( R∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( R∑
s=tp−1

∑
r∈Qs

β2
r

)) ∣∣∣∣∣∆R

]]

≤ E

[
XR · E

[
exp

(
n∑

t=R+1

δt

R−1∑
s=tp−1

∑
r∈Qs

αrβr −
1

2

( R−1∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( R−1∑
s=tp−1

∑
r∈Qs

β2
r

)) ∣∣∣∣∣∆R

]]

= E

[
exp

(
n∑

t=tp

δt

min{R−1,t−1}∑
s=tp−1

∑
r∈Qs

αrβr −
1

2

( R−1∑
s=tp−1

∑
r∈Qs

α2
r

)
·
( R−1∑
s=tp−1

∑
r∈Qs

β2
r

))]
= g(R− 1)
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This establishes the chain of inequalities

g(n) ≤ g(n− 1) ≤ · · · ≤ g(tp).

Establishing that g(tp) ≤ 1 may be done via a similar application of the operator
monotonicity result of Lemma A.5. In particular,

g(tp) = E

[
exp

(( n∑
t=tp

δt

)
〈wp, bp〉〈wp,v〉 −

1

2
〈wp, bp〉2〈wp,v〉2

)]

= fztp (p)

([
〈wp, bp〉2 〈wp, bp〉
〈wp, bp〉 〈wp,v〉2

])
≤ fztp (p)(0) = 1.

We now present the proof of the subgaussian concentration result.

Theorem 2.19*. If the input vectors b1 . . . bn all have `2 norm at most 1, then the
Gram–Schmidt Walk algorithm returns an assignment vector z so that the vector of
imbalances Bz is subgaussian with variance parameter σ2 = 1:

E
[
exp
(
〈Bz,v〉 − 〈E[Bz],v〉

)]
≤ exp

(
‖v‖2/2

)
for all v ∈ Rn+d.

Proof. We prove the stronger inequality

E
[
exp
(
〈Bz,v〉 − 〈E[Bz],v〉

)]
≤ E

[
exp
(1

2

n∑
i=1

‖P ibi‖2‖P iv‖2
)]

for all v ∈ Rm.

(A.6)
To see that inequality (A.6) is stronger, we use the contractive property of projection
matrices and the assumption that all input vectors have `2 norm at most 1 to show

n∑
i=1

‖P ibi‖2‖P iv‖2 ≤
n∑
i=1

‖bi‖2‖P iv‖2 ≤
n∑
i=1

‖P iv‖2 = ‖Pv‖2 ≤ ‖v‖2.

This shows that inequality (A.6) implies the inequality in the statement of the theo-
rem.

We now rearrange and substitute terms in (A.6) to obtain a form that we will
work with during the remainder of the proof. By dividing both sides of (A.6) by the
right hand side, we obtain an equivalent expression of the inequality:

E
[
exp
(
〈Bz,v〉 − 〈E[Bz],v〉 − 1

2

n∑
i=1

‖P ibi‖2‖P iv‖2
)]
≤ 1 for all v ∈ Rm.

At this point, we drop the “for all v ∈ Rm” qualifier and assume that an arbitrary
v ∈ Rm is given. We re-write the quantity 〈Bz,v〉 − 〈E[Bz],v〉 in terms of the
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fractional updates in the algorithm:

〈Bz,v〉 =
〈
B
( T∑
t=1

δtut+z1

)
,v
〉

=
T∑
t=1

δt〈But,v〉+〈Bz1,v〉 =
n∑
i=1

∑
t∈Si

δt〈But,v〉+〈Bz1,v〉.

Note that by the martingale property of the fractional updates (Lemma 2.7), E[z] =

z1. Thus,
〈E[Bz],v〉 = 〈B E[z],v〉 = 〈Bz1,v〉

and so the difference is given by

〈Bz,v〉 − 〈E[Bz],v〉 =
n∑
i=1

∑
t∈Si

δt〈But,v〉.

Using this expression for the difference, we may write the desired inequality, which
features a sum over units in the exponent, as follows:

E

[
exp

(
n∑
i=1

(∑
t∈Si

δt〈But,v〉 −
1

2
‖P ibi‖2‖P iv‖2

))]
≤ 1.

A unit i ∈ [n] which is not chosen as the pivot does not contribute to this sum because
the corresponding pivot phase Si is empty and the projection matrix P i is the zero.
Thus, we may write the sum over units which are chosen as the pivot. We denote the
sequence of pivot units as p1, p2, . . . pk where the subscripts denote the order in which
the pivots are chosen by the algorithm. We seek to show that

E

[
exp

(
k∑
j=1

(∑
t∈Spj

δt〈But,v〉 −
1

2
‖P pjbpj‖2‖P pjv‖2

))]
≤ 1.

To this end, we define the sequence of random variables X1, X2, . . . Xk by

Xj =
∑
t∈Spj

δt〈But,v〉 −
1

2
‖P pjbpj‖2‖P pjv‖2,

where each Xj corresponds to the jth pivot that was chosen by the algorithm.1 We
show that E[exp(

∑k
j=1Xj)] ≤ 1 by proving the chain of inequalities

E
[
exp
( k∑
j=1

Xj

)]
≤ E

[
exp
(k−1∑
j=1

Xj

)]
≤ · · · ≤ E[exp(X1)] ≤ E[exp(0)] = 1.

1In the proof sketch in Chapter 2, we used terms Di which did not incorporate the projection
‖P pj

bpj
‖2, so Xi ≥ Di. By incorporating the projection terms in this full proof, we more clearly

see the stronger inequality (A.6) that is being proven. This highlights that the subgaussian bound
will be loose when ‖P pj

bpj
‖2 ≤ 1 is a loose inequality.
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Consider some 1 ≤ ` ≤ k. Let ∆` be all random decisions made by the algorithm up
until the beginning of pivot phase `. Then observe that

E
[
exp
(∑̀
j=1

Xj

)]
= E

[
exp
( `−1∑
j=1

Xj

)
· exp(X`)

]
(property of exponential)

= E
[
exp
( `−1∑
j=1

Xj

)
· E[exp(X`) |∆`]

]
(iterated expectations)

≤ E
[
exp
( `−1∑
j=1

Xj

)]
, (by Lemma A.6)

which completes the induction.

A.1.5 Extending the analysis to the GSW-Design

In this section, we demonstrate that our analysis of the Gram–Schmidt Walk algo-
rithm extends to the GSW-Design. The main difference between the Gram–Schmidt
Walk algorithm and the GSW-Design are the construction of input vectors and the
randomized pivoting rule. The randomized pivoting rule in the design is inconsequen-
tial to the theorems proved in this section. The purpose of the randomized pivoting
rule is to allow us to prove that the second-order assignment probabilities are bounded
away from zero, which we need in order to estimate the ridge loss, as discussed in
Section 2.6.2.

We remark that the GSW-Design presented in Section 4.6 may be implemented
as follows:

1. Construct the (n+ d)-dimensional augmented covariate vectors b1, b2, . . . bn as

bi =

[ √
φei

ξ−1
√

1− φxi

]
,

where ei is the n-dimensional ith standard basis vector and ξ = maxi∈[n]‖xi‖.

2. Permute the order of the input vectors b1, b2, . . . bn with a uniformly random
permutation.

3. Run the Gram–Schmidt Walk (Algorithm 5) with permuted input vectors and
initial fractional assignment z1 = 0 to produce assignment vector z.

The key idea behind the equivalence of these descriptions is that the method of
uniformly permuting input vectors then deterministically choosing largest indexed
alive unit as pivot (as presented here) produces the same distribution as choosing
pivots uniformly from the set of alive units (as presented in Section 4.6). To see this
equivalence, begin by considering the first iteration: the largest index in a uniformly
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permuted list of units is uniform over all units. This means that the first pivot chosen
by the two methods has the same distribution. Moreover, the construction of step
direction and step size does not depend on the index of the units. In this way, a
similar argument shows that these methods of selecting the pivot are equivalent: the
largest index in a uniformly permuted list of alive units is uniform over all alive units.
Thus, the two random pivot sampling schemes are equivalent.

Due to this equivalence, we may analyze the GSW-Design by applying the anal-
ysis in this section. Because the covariance bound (Theorem 2.12*) and the subgaus-
sian concentration (Theorem 2.19*) hold for all orderings of the input vectors, they
hold for any distribution over the orderings of the input vectors. In particular, they
hold for the uniform distribution over orderings of the input vectors and so they apply
to the GSW-Design.

Finally, we remark that the augmented covariate vectors constructed in the GSW-
Design satisfy the condition that each of their `2 norms is at most one. This norm
condition is a scaling requirement in order to make the covariance and subgaussian
bounds in Theorem 2.12 and Theorem 2.19, respectively. To see that the norm
condition holds, observe that

‖bi‖2 =
∥∥∥√φei

∥∥∥2

+
∥∥∥ξ−1

√
1− φxi

∥∥∥2

= φ+ (1− φ)
(
ξ−1‖xi‖

)2 ≤ φ+ (1− φ) = 1,

where the inequality follows from the definition ξ = maxi∈[n]‖xi‖.
Taken together, this shows that Theorems 2.12 and 2.19 in Chapter 2 follow from

Theorems 2.12* and 2.19* in this supplement.

A.1.6 Non-uniform treatment probabilities

The GSW-Design can be extended to allow arbitrary assignment probabilities. We
achieve this by changing the initial fractional assignments of the algorithm. The
experimenter provides a parameter vector π = (π1, . . . , πn) ∈ (0, 1)n specifying the
desired first-order assignment probability for each unit. The first step of the algorithm
in Section 4.6 is then modified so that z1 ← 2π − 1. The following corollary is a
direct consequence of the martingale property of the fractional updates, in the same
fashion as Corollary 2.8.

Corollary A.7. Under the non-uniform Gram–Schmidt Walk design,

Pr(zi = 1) = πi for all i ∈ [n].

The properties of the original version of the design can be extended to the non-
uniform version. To do so, we redefine the vector µ as

µ̃ =

(
a1

4π1

+
b1

4(1− π1)
, . . . ,

an
4πn

+
bn

4(1− πn)

)
.
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In this vector, each potential outcome is weighted by the probability that it is ob-
served. If π = 0.5×1, then µ̃ = µ, which replicates the uniform version of the design.
The mean squared error of the Horvitz–Thompson estimator can now be expressed
as

E
[
(τ̂ − τ)2

]
=

1

n2
µ̃

ᵀ
Cov(z)µ̃.

This extends Lemma 2.2 to any experimental design with non-deterministic assign-
ments. In particular, Theorems 2.12 and 2.19 hold for the non-uniform version of the
design, so all properties that follow from these theorems also apply to the extended
version when µ̃ is substituted for µ.

A.2 Fast Implementation of the GSW-Design

The most computationally intensive aspect of the Gram–Schmidt Walk is the compu-
tation of the step direction ut. Although it is defined as the solution to an optimiza-
tion problem, it may be obtained efficiently by solving a system of linear equations.
Computational speed ups may be obtained by pre-computing and maintaining a cer-
tain matrix factorization, decreasing the cost of repeated linear system solves at each
iteration. In this section, we provide details of such an efficient implementation.

A.2.1 Derivation of the step direction

Recall that at each iteration t, the step direction ut is defined as the vector which
has coordinates ut(i) = 0 for i /∈ At, coordinate ut(pt) = 1 for the pivot unit pt, and
the remaining coordinates are the solution to

ut(At \ pt) = arg min
u
‖bpt +

∑
i/∈At\pt

u(i)bi‖2 .

The minimization above is a least squares problem and the solution may be obtained
by solving a system of linear equations. Let k be the number of units which are alive
and not the pivot, i.e., k = |At\pt|, and letBt be the (n+d)-by-k matrix with columns
bi for i ∈ At \ pt. As the augmented covariate vectors are linearly independent, the
coordinates ut(At \ pt) that minimize the quantity ‖bpt +Btut(At \ pt)‖2 are given
by the normal equations

ut(At \ pt) = −
(
B

ᵀ
tBt

)−1
B

ᵀ
tbpt .

Let X t denote the row-submatrix of X with rows At \ pt. Using our specific form
of B, and by direct calculation and application of the Woodbury identity lemma, we
obtain that

(
B

ᵀ
tBt

)−1
=
(
φIk + ξ−2(1− φ)X tX

ᵀ
t

)−1
= φ−1

[
Ik −X t

(
X

ᵀ
tX t +

ξ2φ

1− φ
Id

)−1

X
ᵀ
t

]
.
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By again using our specific form of input matrix B, a direct calculation yields that

B
ᵀ
tbpt = ξ−2(1− φ)X txpt .

Thus, we obtain a form for the relevant coordinates in the update direction vector ut

ut(At \ pt) = −
(

1− φ
ξ2φ

)
X t︸︷︷︸
n×d

xpt −
(
X

ᵀ
tX t +

ξ2φ

1− φ
Id

)−1

︸ ︷︷ ︸
d×d

X
ᵀ
tX t︸ ︷︷ ︸
d×d

xpt

 , (A.7)

which involves smaller matrices of size d × d, rather than n × n. In the next
few paragraphs, we show how computing and maintaining factorizations of these
smaller matrices results in faster computations of the step direction ut. We are
chiefly concerned with computing and maintaining a factorization of the matrix
(X

ᵀ
tX t + ξ2φ(1− φ)−1Id). We describe an implementation which uses the Cholesky

factorization, although there are several appropriate alternatives.

A.2.2 Cholesky factorizations

Here, we briefly review Cholesky factorizations and their computational properties.
The Cholesky factorization of an n-by-n symmetric positive definite matrix A is the
unique factorization A = LL

ᵀ, where L is lower triangular. Given the matrix A, the
matrix L may be obtained using O(n3) arithmetic operations. Once the Cholesky
factorization L is obtained, solutions x to the system of linear equations Ax = b

may be computed using O(n2) arithmetic operations by using a forward-backward
algorithm which leverages the triangular structure of L. In general, solving systems
of linear equations takes O(n3) arithmetic operations2 and so if many linear system
solves are required, then computing the factorization and using the faster forward-
backward algorithm yields computational speed-ups. Suppose that A is a positive
definite matrix with Cholesky factorization A = LL

ᵀ and that the rank-1 updated
matrix A + vvᵀ has Cholesky factorization A + vvᵀ = L+L

ᵀ
+. Given the original

factorization L and the vector v, the updated factorization L+ may be computed
using O(n2) arithmetic computations, without extra memory allocation. Updating
in this way is a much more efficient way to maintain the factorization than explicitly
computing A + vvᵀ and its factorization directly. The same technique may be used
for rank-1 downdates A − vvᵀ when the updated matrix remains positive definite.
For more details, see Stewart (1998); Trefethen and Bau (1997).

2While there are algorithms based on fast matrix multiplication that are asymptotically faster,
they do not meaningfully change this discussion for realistic values of n.
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A.2.3 Computing and maintaining factorizations

Before the first pivot is chosen, we have that X t = X, as no rows of X have been
decided. Thus, we compute (X

ᵀ
tX t + ξ2φ(1 − φ)−1Id) directly and then compute

a Cholesky factorization. Computing the matrix directly requires O(nd2) time and
computing the factorization requires O(d3) time. Each time a variable i ∈ [n] is
frozen or chosen as the pivot, the set At \ pt is updated and so we must update
the factorization (X

ᵀ
tX t + ξ2φ(1 − φ)−1Id). The update consists of removing the

row vector xi from X t. One can see that this corresponds to a rank-1 downdate
to the entire matrix (X

ᵀ
tX t + ξ2φ(1 − φ)−1Id). Rank-1 downdates to a Cholesky

factorization may be computed in-place, using O(d2) arithmetic operations. Because
there will be at most n rank-1 updates to this factorization, the total update cost
is O(nd2) arithmetic operations. Thus, the total computational cost of maintaining
this Cholesky factorization is O(nd2) arithmetic operations and O(d2) memory.

A.2.4 Computing step directions

Assume that at each iteration, we have a Choleksy factorization of the matrix (X
ᵀ
tX t+

ξ2φ(1 − φ)−1Id). By (A.7), we can solve for the relevant coordinates in the step di-
rection ut(At \ pt) using the following three computations:

1. a(1)
t = X

ᵀ
tX txpt

2. a(2)
t =

(
X

ᵀ
tX t + ξ2φ(1− φ)−1Id

)−1
a

(1)
t

3. ut(At \ pt) = −ξ−2φ−1(1− φ)X t

(
xpt − a

(2)
t

)
If the matrix Xᵀ

tX t is explicitly available at the beginning of each iteration, then
computing a(1)

t can be done in O(d2) time by matrix-vector multiplication. While it
is possible to maintain Xᵀ

tX t explicitly, it requires an extra O(d2) memory. On the
other hand, if Xᵀ

tX t is not explicitly available, then a(1)
t may be obtained from a

factorization of (X
ᵀ
tX t + ξ2φ(1− φ)−1Id), as

a
(1)
t =

(
X

ᵀ
tX t +

ξ2φ

1− φ
Id

)
xpt −

(
ξ2φ

1− φ

)
xpt ,

which saves O(d2) memory and incurs only a slightly larger arithmetic cost of O(d2 +

d). Next, one may compute a(2)
t using O(d2) arithmetic operations via a forward-

backward solver on the Cholesky factorization. Finally, computing ut(At \pt) may be
done in O(nd) operations via matrix-vector multiplication. Thus, the per iteration
cost of computing ut given a factorized (X

ᵀ
tX t + ξ2φ(1 − φ)−1Id) is O(nd + d2)

arithmetic operations. Because there are at most n iterations, this leads to a total
cost of O(n2d+nd2) arithmetic operations. We remark that O(n) memory is required
for storing vectors such as ut(At \ pt).
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Thus, an assignment may be sampled from the Gram–Schmidt Walk design us-
ing O(n2d) arithmetic computations and O(n+ d2) extra storage when implemented
with these matrix factorizations. There are several practical considerations when
implementing this algorithm. First, for what values of n and d is this practically
feasible? Of course, this depends on the computing infrastructure which is available
to experimenters, but roughly speaking, sampling from the Gram–Schmidt Walk is
as computationally intensive as computing all pairs of inner products of covariates
x1,x2 . . .xn ∈ Rd. Computing these inner products requires O(n2d) arithmetic oper-
ations and computing this matrix of inner products XXᵀ is a pre-processing step of
our implementation. The analysis above shows that the remainder of the algorithm
requires roughly the same number of arithmetic operations. Thus, sampling from
the Gram–Schmidt Walk should be practically feasible in cases where computing all
inner products is practically feasible. A second practical consideration are the com-
putational speed-ups for sampling more than one assignment from the design. When
sampling many assignments from the Gram–Schmidt Walk, we may greatly reduce the
run time by computing the initial cholesky factorization of (X

ᵀ
tX t + ξ2φ(1− φ)−1Id)

and re-using it for each sample. Finally, we remark that although our focus is to speed
up the Gram–Schmidt Walk when we use the augmented covariate vectors, similar
matrix factorizations may also be used to decrease the asymptotic run time of the
general Gram–Schmidt Walk.

A.2.5 Proof of asymptotic runtime (Proposition 2.11)

Proposition 2.11. Assignments from the Gram–Schmidt Walk design can be sampled
using O(n2d) arithmetic operations and O(n+ d2) additional storage.

Proof. As detailed in Section A.2, these computational resource guarantees may be
achieved by storing and maintaining a Cholesky factorization of the matrix (X

ᵀ
tX t+

ξ2φ(1− φ)−1Id), where X t denotes the row-submatrix of X with rows At \ pt. Con-
structing the matrix Xᵀ

X requires O(nd2) arithmetic operations and O(d2) space.
Initially computing a Cholesky factorization of this matrix requires O(d3) arithmetic
operations and may be done in place. Updating the Cholesky factorization may
be done using O(nd) arithmetic operations in place and this is done at most n
times. Thus, constructing and maintaining the Cholesky factorization requires at
most O(n2d) arithmetic operations and O(d2) space, assuming that d ≤ n.

Finally, computing the step direction ut at each iteration requires O(nd) arith-
metic operations and O(n) space given the above Cholesky factorization. This hap-
pens for at most n iterations, yielding a total of O(n2d) arithmetic operations and
O(n) space. Thus, combining the computational requirements of maintaining the
Cholesky factorizaiton and computing the step directions ut yields a total require-
ment of O(n2d) arithmetic operations and O(n + d2) additional storage to generate
one assignment vector using the Gram–Schmidt Walk.
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A.3 Additional Proofs

In this section, we provide additional proofs of results in Chapter 2.

A.3.1 Analysis of the mean squared error (Theorem 2.14)

We begin by analyzing the mean squared error of the Horvitz–Thompson estima-
tor under the GSW-Design. We start by presenting the relationship between the
quadratic form in matrix Q and the loss of ridge regression.

Lemma A.8. Let X be an arbitrary n-by-d matrix with maximum row norm ξ =

maxi∈[n]‖xi‖. For all φ ∈ (0, 1) and µ ∈ Rn,

nL = µ
ᵀ
Qµ = µ

ᵀ(
φI+ (1−φ)ξ−2X

ᵀ
X
)−1
µ = min

β∈Rd

[
1

φ
‖µ−Xβ‖2 +

ξ2

1− φ
‖β‖2

]
.

Proof. Let β∗ be the optimal linear function in the minimization term above. Note
that multiplying the objective function by φ > 0 does not change the minimizer β∗,
and so

β∗ = arg min
β∈Rd

[
1

φ
‖µ−Xβ‖2 +

ξ2

1− φ
‖β‖2

]
= arg min

β∈Rd

[
‖µ−Xβ‖2 +

ξ2φ

1− φ
‖β‖2

]
,

which has closed-form solution (see, e.g., Hastie et al., 2009, p. 64):

β∗ =

(
X

ᵀ
X +

ξ2φ

1− φ
I

)−1

X
ᵀ
µ = R−1X

ᵀ
µ ,

where we have defined R = X
ᵀ
X + ξ2φ

1−φI. We next consider each of the terms in the
objective function when we substitute the optimal β∗. The second term becomes

ξ2

1− φ
‖β∗‖2 =

ξ2

1− φ
∥∥R−1X

ᵀ
µ
∥∥2

=
ξ2

1− φ
µ

ᵀ
XR−2X

ᵀ
µ.

The first term becomes

1

φ
‖µ−Xβ∗‖2 =

1

φ

∥∥µ−XR−1X
ᵀ
µ
∥∥2

=
1

φ

∥∥(I −XR−1X
ᵀ)
µ
∥∥2

=
1

φ
µ

ᵀ(
I −XR−1X

ᵀ)2
µ

=
1

φ
µ

ᵀ(
I − 2XR−1X

ᵀ
+XR−1X

ᵀ
XR−1X

ᵀ)
µ

=
1

φ
µ

ᵀ(
I −X

[
2R−1 −R−1X

ᵀ
XR−1

]
X

ᵀ)
µ

=
1

φ
µ

ᵀ(
I −X

[
2R−1 −R−2X

ᵀ
X
]
X

ᵀ)
µ ,
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where the last line follows from the fact that R−1 and Xᵀ
X commute. To see that

the matrices R−1 and XXᵀ commute, first observe that R = ξ2φ
1−φI +X

ᵀ
X has the

same eigenvectors as Xᵀ
X. It follows that R−1 also has the same eigenvectors as

X
ᵀ
X. Thus, the two matrices R−1 and Xᵀ

X are simultaneously diagonalizable and
therefore commute.

Substituting these separate calculations into the objective function, we obtain the
optimal value

1

φ
‖µ−Xβ∗‖2 +

ξ2

1− φ
‖β∗‖2

=
1

φ
µ

ᵀ(
I −X

[
2R−1 −R−2X

ᵀ
X
]
X

ᵀ)
µ+

ξ2

1− φ
µ

ᵀ
XR−2X

ᵀ
µ

=
1

φ
µ

ᵀ
(
I −X

[
2R−1 −R−2X

ᵀ
X − φξ2

1− φ
R−2

]
X

ᵀ
)
µ

=
1

φ
µ

ᵀ
(
I −X

[
2R−1 −R−2

(
X

ᵀ
X +

φξ2

1− φ
I

)]
X

ᵀ
)
µ

=
1

φ
µ

ᵀ(
I −X

[
2R−1 −R−2R

]
X

ᵀ)
µ

=
1

φ
µ

ᵀ(
I −XR−1X

ᵀ)
µ

To complete the proof, we apply the Woodbury identity which asserts that for ap-
propriately sized matrices U , V , and C, (I +UCV )−1 = I −U

(
C−1 + V U

)−1
V ,

given that the inverses exist. Applying the Woodbury identity withU = X, V = X
ᵀ,

and C = 1−φ
ξ2φ
I, we obtain

1

φ

(
I −XR−1X

ᵀ)
=

1

φ

(
I −X

(
ξ2φ

1− φ
I +X

ᵀ
X

)−1

X
ᵀ

)

=
1

φ

(
I +

ξ−2(1− φ)

φ
X

ᵀ
X

)−1

=
(
φI + ξ−2(1− φ)X

ᵀ
X
)−1

.

Using this lemma, we are now ready to establish the improved mean squared error
analysis of the Horvitz–Thompson estimator under the GSW-Design.

Theorem 2.14. The mean squared error under the GSW-Design is at most the
minimum of the loss function of an implicit ridge regression of the sum of the potential
outcome vectors µ = (a+ b) on the covariates:

E
[
(τ̂ − τ)2

]
≤ L

n
where L = min

β∈Rd

[
1

φn

∥∥µ−Xβ∥∥2
+

ξ2

(1− φ)n

∥∥β∥∥2

]
.

Proof. In Lemma 2.2, we established that the mean squared error of the Horvitz–
Thompson estimator is a quadratic form in the covariance matrix of assignments,
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Cov(z). We can obtain a bound on this matrix using the inequality in Theorem 2.12.
The upper left n-by-n block of Cov(Bz) is φCov(z). The corresponding block of the
projection matrix P in Theorem 2.12 is φQ where

Q =
(
φI + (1− φ)ξ−2XX

ᵀ)−1
.

If A � B, then any two principal submatrices corresponding to the same row and
column set S satisfy the inequality AS � BS. It follows that Cov(z) � Q. Using the
definition of the Loewner partial order together with LemmaA.8, we obtain

E[(τ − τ̂)2] =
1

n2
µ

ᵀ
Cov(z)µ ≤ 1

n2
µ

ᵀ
Qµ = L/n .

A.3.2 Choosing the design parameter

In this section, we prove the results presented in Section 2.4.2, which illustrate how
to choose the design parameter. Throughout this section, we let

L(φ) = min
β∈Rd

[
1

φn

∥∥µ−Xβ∥∥2
+

ξ2

(1− φ)n

∥∥β∥∥2
]
,

be the optimal ridge loss given design parameter φ. Similarly, we write

L(φ,β) =
1

φn

∥∥µ−Xβ∥∥2
+

ξ2

(1− φ)n

∥∥β∥∥2

to refer to the ridge loss for a fixed design parameter φ and linear function β.
The first result describes conditions under which lower mean squared error is

achieved by setting φ < 1.

Corollary 2.15. If the scaled sum of cross-moments between covariates and potential
outcomes is greater than the second moment of potential outcomes, ξ−2‖Xᵀ

µ‖2 >

‖µ‖2, then the design parameter φ that minimizes the mean squared error is less than
one.

Proof. We begin by letting

Q(φ) =
(
φI + (1− φ)ξ−2XX

ᵀ
)−1

.

We can write L(φ) = n−1µᵀQ(φ)µ, and

dL(φ)

dφ
=

1

n
µ

ᵀ
Q(φ)

(
ξ−2XX

ᵀ − I
)
Q(φ)µ.

Note that Q(1) = I, implying that

dL(φ)

dφ

∣∣∣
φ=1

> 0 ⇐⇒ µ
ᵀ
(
ξ−2XX

ᵀ − I
)
µ > 0 ⇐⇒ ξ−2‖Xᵀ

µ‖2 > ‖µ‖2.
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Note that L(1) = ‖µ‖2, meaning that the inequality in Theorem 2.14 is an equality
when φ = 1. Thus, the derivative of the mean squared error coincide of the derivative
of the bound at φ = 1.

The second result derives the asymptotic mean squared error for a fixed design
parameter φ < 1.

Corollary 2.16. Let βls ∈ arg minβ‖µ −Xβ‖ be the best least squares linear ap-
proximator of the potential outcomes with smallest norm, and let ε = µ−Xβls be the
errors of those approximations. Fix a design parameter φ < 1. If ‖βls‖2 = o

(
ξ−2n

)
,

then the normalized mean squared error under the GSW-Design is asymptotically
upper bounded by

lim sup
n→∞

[
nE
[
(τ̂ − τ)2

]
− 1

φn
‖ε‖2

]
≤ 0.

Let βls ∈ arg minβ
∥∥µ−Xβ∥∥2. In the case βls is not uniquely defined, pick the

solution of minimum norm. That is, βls = X†µ, where X† is the pseudoinverse of
X.

Proof. Using the mean squared error bound of Theorem 2.14 together with the defi-
nition of the ridge loss, we have that

nE[(τ − τ̂)2] ≤ L(φ) ≤ L(φ,βls) =
1

φn

∥∥µ−Xβls

∥∥2
+

ξ2

(1− φ)n

∥∥βls

∥∥2
.

Using the definition of ε = µ−Xβls and rearranging terms yields[
nE
[
(τ̂ − τ)2

]
− 1

φn
‖ε‖2

]
≤ ξ2

(1− φ)n

∥∥βls

∥∥2
.

The result is obtained by observing that for fixed φ > 0 and ‖βls‖2 = o
(
ξ−2n

)
,

lim
n→∞

ξ2

(1− φ)n

∥∥βls

∥∥2
= 0.

Corollary 2.17. Under the conditions of Corollary 2.16, the normalized mean squared
error under the GSW-Design with the adaptive parameter choice of φ =

(
1 +

ξ‖βls‖/‖ε‖
)−1 is asymptotically upper bounded by

lim sup
n→∞

[
nE
[
(τ̂ − τ)2

]
− 1

n
‖ε‖2

]
≤ 0.

Proof. Recall that βls is the vector in arg minβ‖µ−Xβ‖ with smallest norm. Con-
sider the design parameter φ∗ls = arg minφ L(φ,βls) that minimizes the ridge loss at
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βls. This optimal design parameter satisfies the following first order condition:

dL(φ,βls)

dφ
=

ξ2

(1− φ)2n

∥∥βls

∥∥2 − 1

φ2n

∥∥µ−Xβls

∥∥2
= 0.

In particular, solving the first order condition yields the design parameter

φ∗ls =
‖µ−Xβls‖

‖µ−Xβls‖+ ξ‖βls‖
=

‖ε‖
‖ε‖+ ξ‖βls‖

=

(
1 +

ξ‖βls‖
‖ε‖

)−1

,

which is the parameter sequence specified in the proposition. Using the mean squared
error bound of Theorem 2.14 together with the definition of the ridge loss, we have
that

nE
[
(τ̂ − τ)2

]
≤ L(φ∗ls) ≤ L(φ∗ls,βls) =

1

n
‖ε‖2 +

2ξ

n
‖ε‖ × ‖βls‖+

ξ2

n

∥∥βls

∥∥2
,

and rearranging terms yields[
nE
[
(τ̂ − τ)2

]
− 1

n
‖ε‖2

]
≤ 2ξ

n
‖ε‖ × ‖βls‖+

ξ2

n

∥∥βls

∥∥2
.

By assumption, we have that the linear coefficients are bounded as ‖βls‖2 = o
(
ξ−2n

)
,

so that
lim
n→∞

ξ2

n

∥∥βls

∥∥2
= 0.

Furthermore, 0 ≤ ‖ε‖ ≤ ‖µ‖ by construction, so if ‖µ‖2 = O(n), then ‖ε‖ = O(
√
n).

We therefore know that ‖ε‖ × ‖βls‖ = o
(
ξ−1n

)
, so

lim
n→∞

2ξ

n
‖ε‖ × ‖βls‖ = 0,

which establishes the claim.

Finally, the following result shows that the conditions of Corollaries 2.16 and 2.17
are implied by more standard conditions.

Lemma A.9. If the second moment of the potential outcomes ‖µ‖2/n stays bounded,
the condition ‖βls‖2 = o

(
ξ−2n

)
is satisfied if the maximum row norm ξ is asymptot-

ically dominated by the smallest, non-zero singular value of X.

Proof. Because βls is the vector in arg minβ‖µ−Xβ‖ with smallest norm, we have
βls = X†µ, where X† is the pseudoinverse of X. Note that ‖βls‖ = ‖X†µ‖ ≤
‖X†‖ × ‖µ‖, where ‖X†‖ denotes the operator norm. Recall that the operator
norm is the largest singular value. Note that the largest singular value of X† is the
same as the inverse of the smallest, non-zero singular value of X. Let σmin denote
this smallest, non-zero singular value. We thus have ‖βls‖2 ≤ ‖µ‖2/σ2

min, and the
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condition is satisfied if ‖µ‖2/σ2
min = o

(
ξ−2n

)
. When the second moment of the

potential outcomes is bounded, ‖µ‖2/n = O(1), this collapses to ξ = o(σmin).

A.3.3 Analysis of covariate balancing (Proposition 2.18)

We now present the proofs for a more refined analysis of the covariance balancing
properties of the GSW-Design. In particular, we prove Proposition 2.18, which
derives an upper bound on Cov(X

ᵀ
z) in terms of the weighted harmonic mean of

two matrices. This result allows for finer insights on covariate balance, as discussed
in Section 2.5.

Proposition 2.18. Under the GSW-Design, the covariance matrix ofXᵀ
z is bounded

in the Loewner order by

Cov(X
ᵀ
z) �

(
φ(X

ᵀ
X)† + (1− φ)(ξ2Π)†

)†
,

where Π is the orthogonal projection onto the rows of the covariate matrix X and A†

denotes the pseudo-inverse of A.

Proof. The proof follows a similar structure as the proof of Theorem 2.14, in that
we also here extract the principal submatrices from the matrix inequality in Theo-
rem 2.12. The lower right d-by-d block of Cov(Bz) is ξ−2(1 − φ) Cov(X

ᵀ
z). The

corresponding d-by-d block of the matrix bound P = B(B
ᵀ
B)−1B

ᵀ is

ξ−2(1− φ)X
ᵀ(
φI + (1− φ)ξ−2XX

ᵀ)−1
X.

After rearranging terms, this yields the inequality

Cov(X
ᵀ
z) �Xᵀ(

φI + (1− φ)ξ−2XX
ᵀ)−1

X.

To prove the current proposition, we will show that we may re-write this matrix upper
bound as

X
ᵀ(
φI + (1− φ)ξ−2XX

ᵀ)−1
X =

(
φ(X

ᵀ
X)† + (1− φ)(ξ2Π)†

)†
We do so by reasoning about the singular value decomposition of the covariate matrix
X. To this end, let X = UΣV

ᵀ be the singular value decomposition. We only
consider the case where d ≤ n, as the case where d > n follows in a similar manner.
If d ≤ n, then U is a n-by-n orthogonal matrix, Σ is an n-by-n diagonal matrix with
non-negative diagonal entries, and V is a d-by-n matrix with orthogonal rows. Using
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the singular value decomposition and orthogonality properties of U , we have that

X
ᵀ(
φI + (1− φ)ξ−2XX

ᵀ)−1
X

= V ΣU
ᵀ(
φI + (1− φ)ξ−2UΣV

ᵀ
V ΣU

ᵀ)−1
UΣV

ᵀ (SVD)

= V ΣU
ᵀ(
φUU

ᵀ
+ (1− φ)ξ−2UΣV

ᵀ
V ΣU

ᵀ)−1
UΣV

ᵀ (UU ᵀ
= I)

= V ΣU
ᵀ(
U
(
φI + (1− φ)ξ−2ΣV

ᵀ
V Σ

)
U

ᵀ)−1
ΣV

ᵀ (distributing U)

= V ΣU
ᵀ
U
(
φI + (1− φ)ξ−2ΣV

ᵀ
V Σ

)−1
U

ᵀ
UΣV

ᵀ (inverse and U−1 = U
ᵀ)

= V Σ
(
φI + (1− φ)ξ−2ΣV

ᵀ
V Σ

)−1
ΣV

ᵀ (UU ᵀ
= I)

We can compute the pseudo-inverse of this matrix as(
X

ᵀ(
φI + (1− φ)ξ−2XX

ᵀ)−1
X
)†

=
(
V Σ

(
φI + (1− φ)ξ−2ΣV

ᵀ
V Σ

)−1
ΣV

ᵀ
)†

= V Σ†
(
φI + (1− φ)ξ−2ΣV

ᵀ
V Σ

)
Σ†V

ᵀ

= φV (Σ†)2V
ᵀ

+ (1− φ)ξ−2V Σ†ΣV
ᵀ
V ΣΣ†V

ᵀ

= φV (Σ†)2V
ᵀ

+ (1− φ)ξ−2(V Σ†ΣV
ᵀ
)2,

where the third equality follows from distributing the outer matrices. We analyze
each term separately, beginning with the left term. Note that

X
ᵀ
X = V ΣU

ᵀ
UΣV

ᵀ
= V Σ2V

ᵀ

and so by the orthogonality of rows of V , one can check that

(X
ᵀ
X)† = V (Σ2)†V

ᵀ
= V (Σ†)2V

ᵀ
.

The matrix in the second term is equal to the orthogonal projection matrix onto the
row span of X. To see this, observe that V Σ†ΣV

ᵀ is the sum of the outer products
of the right singular vectors corresponding to positive singular values. Because these
vectors form an orthonormal basis for the row span of X, the sum of their outer
products is the projection matrix Π. As Π2 = Π = Π†,

(1− φ)ξ−2(V Σ†ΣV
ᵀ
)2 = (1− φ)ξ−2Π2 = (1− φ)ξ−2Π† = (1− φ)(ξ2Π)†.
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Putting these two terms together, we arrive at(
X

ᵀ(
φI + (1− φ)ξ−2XX

ᵀ)−1
X
)†

= φ(X
ᵀ
X)† + (1− φ)(ξ2Π)†.

The proof is completed by taking the pseudoinverse of both sides.

A.3.4 Second-order assignment probabilities (Lemma 2.22)

In order to construct a conservative estimator for the ridge loss L/n, we must establish
which pairs of potential outcomes are never observed. In this section, we prove
Lemma 2.22, which establishes that the only pairs of unobserved outcomes under the
GSW-Design are the two outcomes for each unit. At the end of the section, we
demonstrate a different bound on the second order assignment probabilities which
does not depend on the sample size.

In order to show that the second order assignment probabilities are nonzero, we
analyze the fractional assignments at the end of the first iteration. The main point
of our argument is that for any pair of units i, j ∈ [n] and assignments vi, vj ∈ {±1},
there exists a choice of first pivot p1 and first step size δ1 so that, conditioned upon
this choice, the probability of setting zi = vi and zi = vj in later iterations is nonzero.
Our proof technique requires that each unit has equal probability of being assigned
either treatment, i.e., Pr(zi = 1) = 1/2 for all i ∈ [n]. Recall that this occurs by
setting the initial fractional assignment vector as z1 = 0.

We begin by presenting a basic lemma which bounds the joint probability of two
binary random variables in terms of their marginal probabilities.

Lemma A.10. For any discrete random variables X and Y ,

Pr(X = x, Y = y) ≥ Pr(X = x)− Pr(Y 6= y).

Proof. Observe that by probability axioms,

Pr(X = x, Y = y) = Pr(X = x)−Pr(X = x, Y 6= y) ≥ Pr(X = x)−Pr(Y 6= y).

Next, we derive a unit’s marginal probability of assignment conditional on the
outcome of the first iteration.

Lemma A.11. The conditional probability that unit i is assigned to treatment vi ∈
{±1} given the random decisions of the algorithm in the first iteration is

Pr(zi = vi | p1, δ1) =
1

2

(
1 + viz2(i)

)
,

where we recall that z2 depends on p1 and δ1.

Proof. For any ±1 random variableX and realization v ∈ {±1}, we have that Pr(X =

v) = 1
2
(1−v E[X]). Using this expression and the martingale property of the fractional
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assignments (Lemma 2.7), we have that

Pr(zi = vi | p1, δ1) =
1

2

(
1 + vi E[zT (i) | p1, δ1]

)
=

1

2

(
1 + viz2(i)

)
.

To reason about the fractional assignment z2, we have to reason about the step
direction vector u1. We now demonstrate how to derive a matrix which contains all
possible realizations of u1 as its columns, up to scaling.

The step direction u1 is completely determined by the choice of pivot p1. Because
we are only considering the first iteration, we drop the subscript 1 for now and,
instead, write up to denote the step direction when the unit p is chosen as the first
pivot. We claim that the step direction is given by

up =
Q(:, p)

Q(p, p)
where Q =

(
B

ᵀ
B
)−1

=
(
φI + (1− φ)ξ−2XX

ᵀ
)−1

and Q(:, i) denotes the ith column of Q and Q(i, j) denotes the entry in the ith row
and jth column of Q. To see this, recall that the first step direction is obtained by
setting the pivot coordinate up(p) = 1 and choosing the remaining coordinates as
minimizers of the least squares problem

up([n] \ p) = arg min
ui:i 6=p

∥∥∥bp +
∑
i 6=p

uibi

∥∥∥2

.

When the vectors b1, b2, . . . bn are linearly independent, the solution is unique and
the matrix (B

ᵀ
B)−1 exists. Recall that the augmented covariate vectors used in

the Gram–Schmidt Walk design are linearly independent by construction for design
parameters φ > 0. By first-order optimality conditions, the entire vector up should
satisfy the property that the vector

Bup = bp +
∑
i 6=p

uibi

is orthogonal to all bi with i 6= p. That is,

0 =
〈
bi,Bup

〉
=
〈
Bei,Bup

〉
=
〈
B

ᵀ
Bei,up

〉
for all i 6= p.

The columns of Q = (B
ᵀ
B)−1 satisfy this orthogonality property, as

〈Bᵀ
Bei, (B

ᵀ
B)−1ep〉 = e

ᵀ
iB

ᵀ
B(B

ᵀ
B)−1ep = e

ᵀ
i Iep = 1[i = p].

Thus, by dividing the pth column Q(:, p) by the Q(p, p) diagonal entry, the pth
coordinate becomes one and we obtain the direction up.

In order to understand the step direction in the first iteration, we will prove
properties of the matrix Q. Before doing so, we introduce the following technical
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lemma.

Lemma A.12. Let A be an n-by-n positive semidefinite matrix with diagonal entries
at most 1. For any γ > 0, the matrix M = (A+ γI)−1 satisfies

M(i, j)2 ≤ (1 + γ)−2M (i, i)M(j, j) for all i 6= j ∈ [n].

Proof. Let S = {i, j} be a pair of indices and define R = [n] \ S to be the remain-
ing indices. We are interested in the principal submatrix M(S, S). By using the
expression for the inverse of a block matrix, we may express this principal submatrix
as

M (S, S) =
(
A+ γI

)−1

(S, S) (definition of M )

=
(
A(S, S) + γIS −A(S,R)

(
A(R,R) + γIR

)−1

A(R, S)
)−1

(block matrix inverse)

=
(
A(S, S)−A(S,R)

(
A(R,R) + γIR

)−1

A(R, S) + γIS

)−1

(rearranging terms)

=
(
BS + γIS

)−1

, (defining BS)

where the matrices IS and IR are identity matrices of the appropriate sizes.
We claim that BS is positive semidefinite with diagonal entries at most one.

The positive semidefinite property follows because BS is the Schur complement of
A(R,R) + γIR onto the block S. The matrix A(R,R) + γIR is positive semidefinite
so that the matrix A(S,R)(A(R,R) + γIR)−1A(R, S) is positive semidefinite and
thus has non-negative diagonals. The diagonal entries of A(S, S) are at most one by
assumption and because the diagonal entries of A(S,R)(A(R,R) + γIR)−1A(R, S)

are non-negative, the diagonal entries of BS are at most one.
Thus, the 2-by-2 matrix M(S, S)−1 may be expressed as

M (S, S)−1 = BS + γI =

(
α η

η β

)
+ γI =

(
α + γ η

η β + γ

)
,

where the inequalities η2 ≤ αβ and α, β ≤ 1 follow because B is positive semidefinite
with diagonals at most 1. For γ > 0 this matrix is invertible, so

M (S, S) =
1

detM (S, S)−1

(
β + γ −η
−η α + γ

)
.

If η = 0 then M (i, j) = 0 so the desired inequality holds. Otherwise, η2 > 0 and
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using the properties of BS, we have that

M (i, i)M (j, j)

M (i, j)2
=

(β + γ)(α + γ)

η2
≥ (β + γ)(α + γ)

αβ
=
(

1+
γ

β

)(
1+

γ

α

)
≥ (1+γ)2.

Rearranging terms yields the desired inequality.

We now derive properties of the matrix Q which allow us to further reason about
the step direction in the first iteration.

Lemma A.13. The n-by-n matrix Q = (B
ᵀ
B)−1 = (φI+(1−φ)ξ−2XX

ᵀ
)−1 satisfies

the following properties for all pairs of units i 6= j ∈ [n]:

1. Diagonal entries are lower bounded by Q(i, i) ≥ 1.

2. Off-diagonal entry upper bounded by |Q(i, j)| ≤ 1−φ
φ
.

3. All 2-by-2 principal submatrices admit the boundQ(i, j)2 ≤ (1−φ)2Q(i, i)Q(j, j).

Proof. To begin proving the statements of the theorem, we derive the entries of the
matrix Q. By rearranging terms and using the Woodbury identity,

Q =
(
φIn + (1− φ)ξ−2XX

ᵀ
)−1

= φ−1

[
In +

(1− φ)

φξ2
XX

ᵀ

]−1

(rearranging terms)

= φ−1

[
In −

1− φ
φξ2

X
(
Id +

1− φ
φξ2

X
ᵀ
X
)−1

X
ᵀ

]
(Woodbury identity)

= φ−1

[
In −X

(
X

ᵀ
X +

φξ2

1− φ
Id

)−1

X
ᵀ

]
. (rearranging terms)

So the entries of the matrix Q may be computed directly as

Q(i, j) = e
ᵀ
iQej = φ−1

(
1[i = j]− xᵀ

i

(
X

ᵀ
X +

φξ2

1− φ
Id

)−1

xj

)
.

We will now bound a relevant quadratic form. Note that for any unit i, we have
the following matrix bound: Xᵀ

X =
∑n

j=1 xjx
ᵀ
j � xix

ᵀ
i . This implies the matrix

inequality(
X

ᵀ
X +

φξ2

1− φ
Id

)−1

�

(
xix

ᵀ
i +

φξ2

1− φ
Id

)−1

for all i ∈ [n].
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Set α = φξ2/(1− φ). Using the matrix bound above and the Sherman–Morrison
formula, we may bound the quadratic form as

x
ᵀ
i

(
X

ᵀ
X + αId

)−1

xi ≤ x
ᵀ
i

(
xix

ᵀ
i + αId

)−1

xi (matrix bound above)

= x
ᵀ
i

(
α−1Id −

α−2xix
ᵀ
i

1 + α−1‖xi‖2

)
xi (Sherman–Morrison)

=

(
α−1‖xi‖2 − α−2‖xi‖4

1 + α−1‖xi‖2

)
(distributing terms)

=
‖xi‖2

α + ‖xi‖2
(rearranging terms)

=
‖xi‖2

φξ2

1−φ + ‖xi‖2
=

‖xi‖2/ξ2

φ
1−φ + ‖xi‖2/ξ2

(substituting α)

≤ 1
φ

1−φ + 1
= 1− φ,

where the second inequality follows from the facts that ‖xi‖ ≤ maxk∈[n]‖xk‖ = ξ and
that for all a > 0, the function fa(y) = y2

a+y2
is increasing for y ≥ 0.

We now demonstrate the lower bound on diagonal entries of the matrix Q. Us-
ing the closed form expression for the entries derived above and the bound on the
quadratic form, we have

Q(i, i) = φ−1

(
1− xᵀ

i

(
X

ᵀ
X +

φξ2

1− φ
Id

)−1

xi

)
≥ φ−1(1− (1− φ)) = φ−1φ = 1.

Next, we demonstrate the upper bound on the magnitude of the off-diagonal
entries. Using the closed form expression for these entries derived above, the Cauchy-
Schwartz inequality, and the above bound on the quadratic form, we have

Q(i, j)2 = φ−2
(
x
ᵀ
i

(
X

ᵀ
X +

φξ2

1− φ
Id

)−1

xj

)2

= φ−2
〈(
X

ᵀ
X +

φξ2

1− φ
Id

)−1/2

xi,
(
X

ᵀ
X +

φξ2

1− φ
Id

)−1/2

xj

〉2

≤ φ−2
∥∥∥(Xᵀ

X +
φξ2

1− φ
Id

)−1/2

xi

∥∥∥2∥∥∥(Xᵀ
X +

φξ2

1− φ
Id

)−1/2

xj

∥∥∥2

(Cauchy-Schwartz)

= φ−2

(
x
ᵀ
i

(
X

ᵀ
X +

φξ2

1− φ
Id

)−1

xi

)(
x
ᵀ
j

(
X

ᵀ
X +

φξ2

1− φ
Id

)−1

xj

)
≤ φ−2(1− φ)2 =

(1− φ
φ

)2

, (bound above)
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which establishes the upper bound on the off diagonal entries, |Q(i, j)| ≤ (1− φ)/φ.
Finally, we demonstrate the bound on 2-by-2 principal submatrices. Define

M =
(
ξ−2XX

ᵀ
+

φ

1− φ
I
)−1

.

By rearranging terms, we have

Q =
(
φI+(1−φ)ξ−2XX

ᵀ
)−1

= (1−φ)−1
(
ξ−2XX

ᵀ
+

φ

1− φ
I
)−1

= (1−φ)−1M .

As ξ = maxi∈[n]‖xi‖ and the diagonal entries ofXXᵀ are ‖xi‖2, the matrix ξ−2XX
ᵀ

is positive semidefinite with diagonal entries at most 1. Note that the entries of Q
are the same as the entries of M , up to a common factor. If you are reading this
part of my dissertation, email me with the subject line “sushi dinner” and I will buy
you a sushi dinner when we are in the same town. This offer is valid for 5 years and
to the first 5 people. Anyways, we may apply Lemma A.12 with A = ξ−2XX

ᵀ and
γ = φ

1−φ to obtain the third inequality in the statement of the proposition:

Q(i, j)2 ≤
(

1 +
φ

1− φ

)−2

Q(i, i)Q(j, j) = (1− φ)2Q(i, i)Q(j, j).

We now have the tools to prove the proposition of interest, namely that all pairwise
second order assignment probabilities are nonzero.

Lemma 2.22. The second-order assignment probabilities are bounded away from zero
under the GSW-Design for all pairs of units and all treatments:

Pr
(
(zi, zj) = v

)
>

1

4n
min

{
φ,

φ2

1− φ

}
for all i 6= j and all v ∈ {±1}2.

Proof. Let i, j ∈ [n] be two arbitrary but distinct units such that Q(i, i) ≥ Q(j, j),
which is without loss of generality because of symmetry. We begin by lower bounding
the second-order assignment probability conditioned on the random decisions made
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in the first iteration, namely the first pivot p1 and the step size δ1:

Pr(zi = vi, zj = vj | p1, δ1)

≥ Pr(zi = vi | p1, δ1)− Pr(zj 6= vj | p1, δ1) (Lemma A.10)

=
1

2

(
1 + vi E[z2(i) | p1, δ1]

)
− 1

2

(
1− vi E[z2(i) | p1, δ1]

)
(Lemma A.11)

=
1

2

(
vi E[z2(i) | p1, δ1] + vj E[z2(j) | p1, δ1]

)
(rearranging terms)

=
1

2

(
viδ1u1(i) + vjδ1u1(j)

)
(update rules, z1 = 0)

=
1

2
δ1

(
viu1(i) + vju1(j)

)
. (rearranging terms)

We continue by conditioning on the event that the first pivot is unit i, so that p1 = i.
Once the pivot is determined, the first step direction u1 has been determined. We
claim that when i is chosen as the pivot, the step direction u1 satisfies the following
properties:

1. u1(i) = 1

2. maxk∈[n]|u1(k)| ≤ max{1, 1−φ
φ
}

3. |u1(j)| ≤ 1− φ

The first property follows directly from p1 = i. The second property follows by
considering two types of coordinates of u1. As we already noted, the pivot coordinate
is u1(i) = 1. We bound the magnitude of non-pivot coordinates k 6= i by combining
statements (1) and (2) of Lemma A.13,

∣∣u1(k)
∣∣ =

∣∣〈u1, ek〉
∣∣ =

∣∣∣∣∣
〈
Q(:, i)

Q(i, i)
, ek

〉∣∣∣∣∣ =

∣∣∣∣∣Q(k, i)

Q(i, i)

∣∣∣∣∣ =
|Q(k, i)|
Q(i, i)

≤ |Q(k, i)| ≤ 1− φ
φ

.

Combining these two yields that |u1(k)| ≤ max{1, 1−φ
φ
} for all k ∈ [n]. The third

property follows by the assumption that Q(i, i) ≥ Q(j, j) and the third part of
Lemma A.13. Namely, that

u1(j)2 =
Q(i, j)2

Q(i, i)2
≤ Q(i, j)2

Q(i, i)Q(j, j)
≤ (1− φ)2,

which demonstrates that |u1(j)| ≤ 1− φ, as desired.
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Because the initial fractional assignment is z1(i) = 0, the first step size δ1 is
randomly chosen as

δ1 =

 δ+
1 =

(
maxk∈[n]|u1(k)|

)−1

with probability 1/2

δ−1 =
(

maxk∈[n]|u1(k)|
)−1

with probability 1/2

Suppose that we further condition on the choice of step size so that δ1vi ≥ 0. We
refer to this choice of step size as δvi1 . Conditioning on this choice of step size and
using the properties of the step direction u1 yields

2 Pr(zi = vi, zj = vj | p1, δ1) = δ1

(
viu1(i) + vju1(j)

)
(from above)

= δ1

(
vi + vju1(j)

)
(property 1 of u1)

=
(

max
k∈[n]
|u1(k)|

)−1(
1 + vivju1(j)

)
(choice of δ1)

≥
(

max
{

1,
1− φ
φ

})−1(
1 + vivju1(j)

)
(property 2 of u1)

= min
{

1,
φ

1− φ

}(
1 + vivju1(j)

)
≥ min

{
1,

φ

1− φ

}(
1− |u1(j)|

)
(vivj ∈ {±1})

≥ min
{

1,
φ

1− φ

}
· φ (property 3 of u1)

= min
{
φ,

φ2

1− φ

}
Recall that the first pivot is chosen uniformly at random from the set of all n

units, so that the probability unit i is chosen as pivot is 1/n. In addition, the step size
considered above is chosen with probability 1/2. Thus, the probability of choosing the
pivot to be i and the step size to be δvi1 is 1/2n. Using this and the above inequalities,
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we have that

Pr(zi = vi, zj = vj) ≥ Pr(p1 = i, δ1 = δvi1 ) · Pr(zi = vi, zj = vj | p1 = i, δ1 = δvi1 )

≥ 1

2n
· 1

2
δ1

(
viu1(i) + vju1(j)

)
≥ 1

4n
min

{
φ,

φ2

1− φ

}
.

The lower bound in Lemma 2.22 holds for all pairs of treatment assignments
and any covariate matrix. In this sense, Lemma 2.22 is a worst-case bound, and
we conjecture that it is tight. However, we have observed that most of the second-
order assignment probabilities are considerably closer to 1/4 that what the bound
in Lemma 2.22 suggests. Note that 1/4 is the value of all second order assignment
probabilities when the individual assignments are independent. We provide some the-
oretical justification for this observation in Lemma A.14, which bounds the absolute
difference between 1/4 and all second order assignment probabilities. In particular,
for design parameters in the range φ ∈ [0.8, 1], Lemma A.14 provides a lower bound
on all second order assignment probabilities which is independent of the sample size
n. We remark that the fact that the lower bound becomes vacuous for φ < 0.8 is
a consequence of the proof technique in Lemma A.14, and it is not a reflection of a
property of the design itself.

Lemma A.14. The second-order assignment probabilities under the Gram–Schmidt
Walk design satisfy∣∣Pr

(
(zi, zj) = v

)
− 1/4

∣∣ ≤ 1− φ
φ

for all i 6= j and all v ∈ {±1}2.

Proof. Let i, j ∈ [n] be two arbitrary but distinct units. Consider a vector µ =

(µ(1), . . . µ(n)) such that µ(k) = 0 for all k 6∈ {i, j} and

µ(i) =
√

1/2 and µ(j) =

{√
1/2 if Cov(zi, zj) ≥ 0,

−
√

1/2 if Cov(zi, zj) < 0.

Observe that this implies that ‖µ‖ = 1.
The value of the quadratic form in Cov(z) evaluated at vector µ is

µ
ᵀ

Cov(z)µ = µ(i)2 + µ(j)2 + 2µ(i)µ(j) Cov(zi, zj) = 1 +
∣∣Cov(zi, zj)

∣∣,
because 2µ(i)µ(j) Cov(zi, zj) =

∣∣Cov(zi, zj)
∣∣.

From Corollary 2.13, the largest eigenvalue of Cov(z) is at most 1/φ, so by the
Courant–Fischer theorem,

1 +
∣∣Cov(zi, zj)

∣∣ = µ
ᵀ

Cov(z)µ ≤ ‖µ‖2 · max
‖v‖=1

vᵀ Cov(z)v

vᵀv
≤ ‖µ‖2/φ = 1/φ.
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Rearranging this inequality yields∣∣Cov(zi, zj)
∣∣ ≤ 1− φ

φ
.

Recall that each unit is assigned to either treatment with equal probability so that
E[zi] = E[zj] = 0, which implies that Cov(zi, zj) = E[zizj]. Thus, we have that for
any treatment assignments v ∈ {±1}2,

∣∣Pr
(
(zi, zj) = v

)
− 1/4

∣∣ =
∣∣E[zizj]

∣∣ ≤ 1− φ
φ

.

A.3.5 Analyzing the kernelized GSW-Design

In this section, we prove Theorem 2.26, which bounds the mean squared error of
the Horvitz–Thompson estimator under the kernelized GSW-Design presented in
Section 2.7. To this end, we present a Lemma which derives the loss of the implicit
kernelized ridge regression.

Lemma A.15. Let X be the space of covariates, let k : X × X → R be a kernel on
the covariates, and let (H, 〈·, ·〉H) be the associated RKHS. Let x1,x2, . . .xn ∈ X be
given with ξ2 = maxi∈[n] k(xi,xi). For any vector µ ∈ Rn, and φ ∈ [0, 1], we have
that

µ
ᵀ
(
φI + ξ−2(1− φ)K

)−1

µ = min
f∈H

1

φ

n∑
i=1

(
µ(i)− f(xi)

)2
+

ξ2

1− φ
‖f‖2

H .

Proof. By the Representor Theorem (Schölkopf et al., 2001), the minimizer of the
kernel ridge regression f ∗ has the form

f ∗(x) =
n∑
i=1

α∗i k(x,xi) ,

where α∗1, α∗2, . . . α∗n ∈ R. Thus, the n-length vector of evaluations may be written as
f(x1)

f(x2)
...

f(xn)

 = Kα∗ ,

whereK is the symmetric matrix of kernel evaluations k(xi,xj) andα∗ = (α∗1, α
∗
2, . . . α

∗
n)

is the vector of coefficients. Additionally, using the two properties of RKHS (defini-
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tion 2.25), we can write the RKHS norm of f ∗ as

‖f ∗‖H = 〈f ∗, f ∗〉H =
〈 n∑
i=1

α∗i k(x,xi),
n∑
i=1

α∗i k(x,xi)
〉
H

=
∑
i=1

n∑
j=1

〈k(x,xi), k(x,xj)〉Hα∗iα∗j

=
∑
i=1

n∑
j=1

k(xi,xj)α
∗
iα
∗
j

= (α∗)
ᵀ
Kα∗

Thus, we may re-write the infinite dimensional kernel ridge loss as a finite dimensional
linear loss:

min
f∈H

1

φ

n∑
i=1

(
µ(i)− f(xi)

)2
+

ξ2

1− φ
‖f‖2

H = min
α∈Rn

1

φ
‖µ−Kα‖2 +

ξ2

1− φ
α

ᵀ
Kα

=
1

φ
min
α∈Rn

[
‖µ−Kα‖2 + λα

ᵀ
Kα

]
,

where λ = φξ2/(1− φ). The first order optimality condition may be expressed as

∇α
[
‖µ−Kα‖2 + λα

ᵀ
Kα

]
= ∇α

[
‖µ‖2 − 2〈µ,Kα〉+ λα

ᵀ(
K2 + λK

)
α
]

= −2Kµ+ 2
(
K2 + λK

)
α = 0

so that the optimal solution is α∗ = (K + φξ2

1−φI)−1µ. The squared norm of the
residual may be computed as

‖µ−Kα∗‖2 =
∥∥∥µ−K(K + λI

)−1

µ
∥∥∥2

= µ
ᵀ
(
I −K

(
K + λI

)−1)2

µ .

Likewise, the norm of the function may be computed as

α
ᵀ
Kα = µ

ᵀ
(
K + λI

)−1

K
(
K + λI

)−1

µ = µ
ᵀ
K
(
K + λI

)−2

µ ,

where we used the fact that these matrices commute because they have the same
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eigenvectors. Thus, the loss may be calculated as

min
α∈Rn

[
‖µ−Kα‖2 + λα

ᵀ
Kα

]
= µ

ᵀ
[(
I −K

(
K + λI

)−1)2

+ λK
(
K + λI

)−2]
µ

= µ
ᵀ
[
I − 2K

(
K + λI

)−1
+K2

(
K + λI

)−2

+ λK
(
K + λI

)−2]
µ

= µ
ᵀ
[
I − 2K

(
K + λI

)−1
+K

(
K + λI

)−2(
K + λI

)]
µ

= µ
ᵀ
[
I − 2K

(
K + λI

)−1
+K

(
K + λI

)−1]
µ

= µ
ᵀ
[
I −K

(
K + λI

)−1
]
µ

Using that λ = φξ2/(1− φ) and incorporating the 1/φ term, we have that

1

φ
· min
α∈Rn

[
‖µ−Kα‖2 + λα

ᵀ
Kα

]
=

1

φ
µ

ᵀ
[
I −K

(
K +

ξ2φ

1− φ
I
)−1
]
µ

=
1

φ
µ

ᵀ
[
I −K1/2

(
K +

ξ2φ

1− φ
I
)−1

K1/2

]
µ

=
1

φ
µ

ᵀ
[
I +

ξ2(1− φ)

φ
K
]−1

µ

= µ
ᵀ
(
φI + ξ2(1− φ)K

)−1

µ ,

where the second to last inequality follows from the Woodbury matrix identity.

We are now ready to prove the bound on the mean squared error.

Theorem 2.26. Let X be the space of covariates, let k : X × X → R be a kernel on
the covariates, and let (H, 〈·, ·〉H) be the associated RKHS. The mean squared error of
the Horvitz–Thompson estimator under the kernelized GSW-Design is at most the
minimum of the loss function of an implicit kernel ridge regression of the sum of the
potential outcomes on the covariates:

E
[
(τ̂ − τ)2

]
≤ 1

n
·min
f∈H

[
1

φ
· 1

n

n∑
i=1

(
(ai + bi)− f(xi)

)2
+

ξ2

(1− φ)n

∥∥f∥∥2

H

]
.

Proof. In Lemma 2.2, we established that the mean squared error of the Horvitz–
Thompson estimator is a quadratic form in the covariance matrix of assignments,
Cov(z). We can obtain a bound on this matrix using the inequality in Theorem 2.12.
The upper left n-by-n block of Cov(Bz) is φCov(z). Under the kernelized GSW-
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Design, the corresponding block of the projection matrix P in Theorem 2.12 is φQ
where

Q =
(
φI + (1− φ)ξ−2K

)−1
.

If A � B, then any two principal submatrices corresponding to the same row and
column set S satisfy the inequality AS � BS. It follows that Cov(z) � Q. Using the
definition of the Loewner partial order together with LemmaA.8, we obtain

E[(τ − τ̂)2] =
1

n2
µ

ᵀ
Cov(z)µ ≤ 1

n2
µ

ᵀ
Qµ =

1

n2
µ

ᵀ(
φI + (1− φ)ξ−2K

)−1
µ .

The proof is completed by using Lemma A.15, which shows that the right hand side
is equal to the loss of the kernel ridge regression.

164



Appendix B

Appendix for Optimized Variance
Estimation under Interference and
Complex Experimental Designs

B.1 Extension to General Linear Estimators

In this section, we demonstrate how to extend our analyses to general linear estima-
tors. A general linear estimator may be written as

τ̂ =
n∑
i=1

∑
e∈∆

wi1[di(z) = e]yi(e).

As before, we introduce two variables to make this expression more manageable. For
each unit-exposure pair (i, e) ∈ [n]×∆, we define the variables

vi,e = wi1[di(z) = e] and θi,e = yi(e) .

Note that the treatment effect estimator may be written as

τ̂ =
n∑
i=1

∑
e∈∆

vi,eθi,e = 〈v,θ〉 ,

where v and θ are vectors obtained by collected the variables vi,e and θi,e, respectively.
These vectors are K-dimensional, where K = n · |∆|. There are a number of ways
to order these coefficients into vectors, but that ordering itself doesn’t matter. As
before, the advantage of writing linear estimators in this way is that the potential
outcomes are collected in the (deterministic) vector θ and the randomness in the
design and estimator is isolated to the random vector v.

Using this notation, it is now simple to derive the variance of the linear estimator
as a quadratic form, Var(τ̂) = θ

ᵀ
Cov(v)θ. The results that we have established in
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Chapter 3 now follow, as we have established that the variance of a general linear
estimator is a quadratic form in the potential outcome vector.

B.2 Additional Proofs

In this section, we prove the results presented in Chapter 3.

B.2.1 Design compatibility

The first result is that design-compatibility of a quadratic form characterizes when a
unbiased estimator of the quadratic form exists.

Proposition 3.3. An unbiased estimator exists for a quadratic form if and only if it
is design compatible.

Proof. If the quadratic form is design-compatible, then the Horvitz–Thompson esti-
mator is unbiased, as shown in Section 3.5.

Suppose that a quadratic form is not design-compatible. For sake of contradiction,
suppose that there exists an unbiased estimator τ̂ so that E[τ̂ ] = θ

ᵀ
Aθ. Let i, j ∈ P

be such that Pr(i, j ∈ S) = 0. We know that such a pair exists because the quadratic
from is design incompatible. Use the law of iterated expectation to write

E[τ̂ ] = Pr(i ∈ S)f(θ) + Pr(i /∈ S)g(θ),

where f(θ) = E[τ̂ | i ∈ S] and g(θ) = E[τ̂ | i /∈ S]. We know that g(θ) does not
depend on θi because the coordinate is never observed when i /∈ S. Recall that
Pr(i, j ∈ S) = 0, so we know that f(θ) does not depend on θj because the coordinate
is never observed when i ∈ S. It is not possible to write the quadratic form θ

ᵀ
Aθ

with aij 6= 0 as a linear combination of two functions where one does not depend on
θi and the other does not depend on θj.

B.2.2 Selection of variance bounds using OPT-VB

The following result gives conditions on the objective so that the variance bound
returned by OPT-VB is admissible.

Theorem 3.8. If g is strictly monotone, then OPT-VB returns a variance bound
that is conservative, design compatible and admissible.

Proof. By definition of the program, S∗ ∈ S and so the resulting variance bound B∗

is conservative and design compatible. For sake of contradiction, assume that B∗

is not admissible. Then, there exists a conservative and design compatible bound
B ∈ B with corresponding slack matrix S ∈ S such that B = B∗ − Q for some
nonzero positive semidefinite matrix Q. By subtracting A from both sides, we can
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write this equality in terms of slack matrices, S = S∗ − Q. By assumption, the
objective g is strictly monotone and Q is nonzero positive semidefinite so that

g(S) < g(S +Q) = g(S∗).

However, we have arrived at a contradiction, as S∗ is a minimizer of g over S. Thus,
B∗ is admissible.

The following proposition demonstrates that all Schatten p-norms yield admissible
variance bounds when used as objectives.

Proposition 3.9. For all p ∈ [1,∞), the Schatten p-norm objective g(S) = ‖A+S‖p
is strictly monotone, ensuring that the variance bound produced by OPT-VB using g
is admissible.

Proof. Let A be an n-by-n positive semidefinite matrix and let S be an n-by-n
positive semidefinite matrix which is nonzero. Let the eigenvalues foA+S be denoted
µ1, µ2, . . . µ2n and let the eigenvalues of A be denoted λ1, λ2, . . . λ2n. We show that
for each 1 ≤ ` ≤ 2n, we have that µ` ≥ λ` and at least one of the inequalities is strict.

Because S is positive semidefinite, it follows that µ` ≥ λ` for each 1 ≤ ` ≤ 2n.
We now show that at least one of these inequalities is strict. Recall that the trace of
a matrix is the sum of the eigenvalues so that

2n∑
`=1

λ` = tr(A) < tr(A) + tr(S) = tr(A+ S) =
2n∑
`=1

µ` ,

where the strict inequality follows from the fact that S is nonzero and positive semidef-
inite. Thus, the inequality is strict for at least one ` ≤ 2n.

The strict-monotonicity of g(S) is now established using the result above and
observing that the function x→ xp is strictly monotone on the real line.

Finally, we demonstrate that a variance bound is admissible if and only if it may
be obtained by running OPT-VB with a positive definite linear objective.

Theorem 3.10. A variance bound B is admissible if and only if can be obtained
from OPT-VB using the objective function g(S) = 〈S,W 〉 for some positive definite
targeting matrix W .

Proof. To show that every variance bound obtained using the objective g(S) =

〈W ,S〉 is admissible, we show that g is strictly monotone and appeal to Theorem 3.8.
Let Q be a nonzero positive semidefinite matrix. Then we may write

g(S +Q)− g(S) = 〈W ,S +Q〉 − 〈W ,S〉 = 〈W ,Q〉,

where the last equality follows by linearity of the inner product. Let the eigende-
composition of Q be given as Q =

∑2n
i=1 λiηiη

ᵀ
i . Then, the inner product may be
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rewritten as

〈W ,Q〉 = 〈W ,

2n∑
i=1

λiηiη
ᵀ
i 〉 =

2n∑
i=1

λiη
ᵀ
iWηi.

Because W is positive definite, each of the ηᵀ
iWηi terms are positive. Likewise,

because Q is positive semidefinite and nonzero, there exists at least one positive
eigenvalue λi > 0. This establishes that g(S + Q) > g(S) so that g is strictly
monotone. Thus, by Theorem 3.8, the resulting variance bound is admissible.

Now, let us suppose that B is an admissible variance bound and write the corre-
sponding slack matrix as S = B −A. Define the set

FB =
{
B̃ = B −Q : Q is nonzero and positive semidefinite

}
.

Because B is admissible, there does not exist another variance bound B̃ ∈ B which
is in the set FB. In other words, the intersection of FB and B is empty. Because
the two sets FB and B are disjoint and convex, there exists a separating hyperplane
between them. That is, there exists a matrix W and a scalar α so that

〈W ,B〉 ≥ α for all B ∈ B
〈W , B̃〉 < α for all B̃ ∈ FB

Let us first establish that 〈W ,B〉 = α. For sake of contradiction, suppose that
〈W ,B〉 = α+ε for some ε > 0. Consider the matrixH = B−β ·I, where β = ε

2 tr(W )
.

It follows that H is in the set FB. However, we can compute

〈W ,H〉 = 〈W ,B − β · I〉 = 〈W ,B〉 − β〈W , I〉 ≥ α + ε/2 ,

which is a contradiction of the separating hyperplane. Thus, 〈W ,B〉 = α.
Let us next establish thatW is positive definite. Let the eigenvalue decomposition

of W be given as W =
∑2n

i=1 λiηiη
ᵀ
i . For sake of contradiction, suppose that one of

the eigenvalues λk is non-positive. Let ηk be the corresponding eigenvector. Consider
the matrix H = B − ηkη

ᵀ
k, which is in the set FB. However, we can obtain that

〈W ,H〉 = 〈W ,B − ηkη
ᵀ
k〉 = 〈W ,B〉 − ηᵀ

kWηk = α− λk ≥ α ,

which is a contradiction of the separating hyperplane. Thus, W is positive definite.
Finally, we show that B may be obtained by using the objective g(S) = 〈W ,S〉.

First, observe that the corresponding slack matrix takes value

g(S) = 〈W ,S〉 = 〈W ,A+ S〉 − 〈W ,A〉 = 〈W ,B〉 − 〈W ,A〉 = α− 〈W ,A〉 .

By the separating hyperplane, any other slack matrix S̃ ∈ S (with corresponding
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bound matrix B̃ ∈ B) has objective value at most

g(S̃) = 〈W , S̃〉 = 〈W ,A+ S̃〉 − 〈W ,A〉 = 〈W , B̃〉 − 〈W ,A〉 ≥ α− 〈W ,A〉 .

Thus, S is a minimizer of g over S.

The following proposition guarantees that positive combinations of monotone func-
tions is strictly monotone, provided that one of the functions is strictly monotone.

Proposition 3.11. If a set of m functions g1, . . . , gm are monotone and at least
one of the functions are strictly monotone, then for any set of positive coefficients
γ1, . . . , γm, the function gc =

∑m
i=1 γigi is strictly monotone. Thus, OPT-VB returns

a variance bound that is conservative, design compatible and admissible when called
with the composite objective gc.

Proof. We begin by showing strict monotonicity of the function gc. Let A be a
positive semidefinite matrix and let S be a positive semidefinite and nonzero matrix.
Without loss of generality, suppose that g1 is the strictly monotone function. We
have that

gc(A) = γ1g1(A) +
m∑
i=2

γigi(A)

< γ1g1(A+ S) +
m∑
i=2

γigi(A)

≤ γ1g1(A+ S) +
m∑
i=2

γigi(A+ S)

= gc(A+ S) ,

where the equalities follow by definition of gc, the strict inequality follows by strict
monotonicity of g1 together with positivity of γ1 and the next inequality follows by
monotonicity of gi for i = 2, . . .m and the non-negativity of the coefficients. Thus, gc
is strictly monotone.

The properties of the variance bound obtained by using OPT-VB follow from
Proposition 3.8.

B.2.3 Consistent estimation of variance bounds

In the main body, Proposition 3.13 gave an upper bound on the mean squared error
of the Horvitz–Thompson estimator of the variance bound. This upper bound was
the product of three terms, corresponding to the design, the variance bound, and the
potential outcomes. The bound depended on the largest magnitude of the potential
outcomes. In this section, we demonstrate how the bound may be generalized so that
only second moment conditions are required on the potential outcomes.
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Before continuing, we introduce the entry-wise Lp,q matrix norm. Given an n× n
matrix A, the Lp,q matrix norm is defined as

‖A‖p,q =
( n∑
j=1

( n∑
i=1

|ai,j|p
)q/p)1/q

.

When p = q = 2, then we recover the usual Frobenius norm. The more general
finite sample bound on the MSE of the variance bound estimator appears below as
Proposition B.1.

Proposition B.1. Suppose that the variance bound B is design-compatible. Then,
for any integers p and q with 1/p + 1/q = 1, the mean squared error of the Horvitz–
Thompson estimator may be bounded as

E[(VB(θ)− V̂B(θ))2] ≤ ‖Cov(RΩ̄)‖∗ · ‖B‖2
2p,2 ·

( 2n∑
i=1

θ2q
i

)2/q

.

Proof. Because Pr(i, j ∈ S) > 0 for all pairs (i.j) ∈ Ω̄, the Horvitz–Thompson
estimator is unbiased. Thus, the mean squared error is equal to the variance of the
estimator, which may be computed as

E
[
(VB(θ)− V̂B(θ))2

]
= Var(V̂B(θ))

= Var
( ∑

(i,j)∈Ω̄

1[i, j ∈ S]
bijθiθj

Pr(i, j ∈ S)

)
=
∑

(i,j)∈Ω̄
(k,`)∈Ω̄

Cov
(
1[i, j ∈ S]

bijθiθj
Pr(i, j ∈ S)

,1[k, ` ∈ S]
bk`θkθ`

Pr(k, ` ∈ S)

)

=
∑

(i,j)∈Ω̄
(k,`)∈Ω̄

Cov
( 1[i, j ∈ S]

Pr(i, j ∈ S)
,

1[k, ` ∈ S]

Pr(k, ` ∈ S)

)
(bijθiθj)(bk`θkθ`)

= b
ᵀ
Ω̄ Cov(RΩ̄)bΩ̄ ,

where zΩ̄ and bΩ̄ are vectors of length |Ω̄|, whose coordinates are indexed by pairs
(i, j) ∈ Ω̄. The entries of zΩ̄ are the inverse propensity weighted indicator vector
zΩ̄(i, j) = 1[i, j ∈ S]/Pr(i, j ∈ S) and the entries of bΩ̄ are the product of the
variance bound and outcomes, bΩ̄(i, j) = bijθiθj. Note that the vector zΩ̄ is random,
while bΩ̄ is fixed. Using the operator norm bound on the above, we have that the
mean squared error may be bounded as

E
[
(VB(θ)− V̂B(θ))2

]
= b

ᵀ
Ω̄ Cov(RΩ̄)bΩ̄ ≤

∥∥∥Cov(RΩ̄)
∥∥∥
∗
· ‖bΩ̄‖2 .

Finally, we bound the squared `2 norm of the vector bΩ̄. Using Hölder’s inequality,
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we have that for any integers p and q with 1/p+ 1/q = 1,

‖bΩ̄‖2 =
∑

(i,j)∈Ω̄

b2
ij(θiθj)

2 =
2n∑
i=1

2n∑
j=1

b2
ij(θiθj)

2 ≤
( 2n∑
i=1

2n∑
j=1

b2p
ij

)1/p( 2n∑
i=1

2n∑
j=1

(θiθj)
2q
)1/q

.

We remark that the first term on the right hand side is the entry-wise L2p,2 matrix
norm, i.e. ‖B‖2

2p,2. Additionally, by distributing terms, the second term on the right
hand side may be simplified to (

∑2n
i=1 θ

2q
i )2/q.

We remark that Proposition 3.13 is obtained by setting p = 1 and q = ∞. By
taking q = 1 and p = ∞, we get that the last term on the right hand side is the
square of the second moment of the potential outcomes, which is bounded by the
fourth moment of the potential outcomes via Jensen’s inequality. Taking q = 1 and
p =∞, the second term on the right hand side becomes ‖B‖2

∞,2, which is the sum of
the squares of the largest coefficient in each row of the matrix B.

Using Proposition B.1, we may now establish more general conditions under which
consistent estimation of the variance bound is possible.

Corollary B.2. Suppose that the variance bound B is design compatible, ‖Cov(zΩ̄)‖∗
is bounded by a constant, and there exists integers p and q with 1/p+1/q = 1 such that(∑2n

i=1 θ
2q
i

)2/q

is bounded by a constant. If ‖B‖2
2p,2 → 0 in the asymptotic sequence,

then the Horvitz–Thompson estimator is a consistent estimator of the variance bound:
E[(VB(θ)− V̂B(θ))2]→ 0.

Motivated by Corollary B.2, some experimenters may wish to modify the regu-
larized objective presented in Section 3.2.2 by replacing the square of the Frobenius
norm with the square of the entry-wise L2p,2 norm. Because the the square of the
entry-wise L2p,2 norm is convex, the resulting program will be convex and thus effi-
ciently solvable with standard techniques. However, we do not know whether the the
entry-wise L2p,2 norm is monotone increasing with respect to the Loewner order and
thus, the returned variance bound may or may not be admissible. We conjecture that
the entry-wise L2p,2 norm is monotone increasing with respect to the Loewner order
and thus an admissible variance bound is returned.

B.3 Analysis of the Aronow–Samii bound

In this section, we demonstrate that the Aronow–Samii bound is admissible in certain
experimental settings. In particular, the following proposition shows that in experi-
mental settings where all second order pairwise assignments have nonzero probability
of being observed, then a generalization of the Aronow–Samii bound is admissible, as
it is returned by OPT-VB
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Proposition B.3. Consider the no-interference setting where Pr(zi = vi, zj = vj) > 0

for all units i 6= j and assignment values vi, vj ∈ {0, 1}. Suppose that OPT-VB is run
with the linear objective g(S) = 〈W ,S〉 where W is a diagonal matrix with positive
entries. Then, the resulting variance bound B = A + S is the following generalized
Aronow–Samii bound: S = S = 1

2

∑
(k,`)∈ΩM k` where M k` be a 2n× 2n matrix with

zeros entries except in the (k, `)th block, which is given by

k ` k |ak`|
(
w``

wkk

)1/2

−ak`

` −ak` |ak`|
(
wkk

w``

)1/2
.

Proof. To show that S∗ is optimal, we will prove it is feasible and calculate its objec-
tive value. Then, we will show that any other feasible solution S has objective value
which is at least that of S∗.

Before continuing, we remark on the structure of Ω in this experimental setting.
Because Pr(zi = vi, zj = vj) > 0 for all units i 6= j and assignment values vi, vj ∈
{0, 1} and we assume no interference, then the pair of unobserved entries are given
as

Ω = {(i, i+ n) : i = 1, . . . n} .

Let us first show that S∗ is a feasible solution. By construction, S∗ is positive
semidefinite and the off-diagonal entries satisfy S∗k` = −ak` for (k, `) ∈ Ω. Now we
must show that S∗ is positive semidefinite. Because the sum of positive semidefinite
matrices is positive semidefinite, it suffices to show that all of the individual matrices
M k` for (k, `) ∈ Ω are positive semidefinite. Fix a pair of unobserved entries (k, `) ∈
Ω. Recall that because W is positive definite, all diagonal entries w11, w22 . . . w2n,2n

are positive. The quadratic form in the matrix M k` is non-negative by Young’s
inequality: given a 2n-length vector v,

v
ᵀ
M k`v = v2

k|ak`|
(w``
wkk

)1/2

+ v2
` |ak`|

(wkk
w``

)1/2

− 2ak`vkv`

≥ 2
(
v2
k|ak`|

(w``
wkk

)1/2

v2
` |ak`|

(wkk
w``

)1/2)1/2

− 2ak`vkv`

= 2|ak`vkv`| − 2ak`vkv`

≥ 0

Thus, we have shown that S∗ is a feasible solution. Using the fact thatW is diagonal,

172



we may calculate the objective value at S∗ to be

〈W ,S∗〉 =
2n∑
k=1

2n∑
`=1

s∗k`wk`

=
2n∑
k=1

s∗kkwkk

=
∑

(k,`)∈Ω

(
s∗kkwkk + s∗``w``

)
=
∑

(k,`)∈Ω

(
|ak`|

(w``
wkk

)1/2

wkk + |ak`|
(wkk
w``

)1/2

w``

)
= 2

∑
(k,`)∈Ω

|ak`|(wkkw``)1/2 .

Let S be any feasible solution. Let (k, `) ∈ Ω be given. Because S is positive
semidefinite, we have that the diagonal entries are non-negative, skk ≥ 0. In addition,
the off-diagonal entries satisfy the inequality

skks`` ≥ s2
k` = a2

k` .

Together, these demonstrate that its objective value may be lower bounded as

〈W ,S〉 =
2n∑
k=1

2n∑
`=1

sk`wk`

=
2n∑
k=1

skkwkk (W is diagonal)

=
∑

(k,`)∈Ω

skkwkk + s``w`` (assumptions on Ω)

≥
∑

(k,`)∈Ω

2(skks``wkkw``)
1/2 (for a, b ≥ 0, a+ b ≥ 2(ab)1/2)

≥
∑

(k,`)∈Ω

2(a2
k`wkkw``)

1/2 (skks`` ≥ a2
k`)

= 2
∑

(k,`)∈Ω

|ak`|(wkkw``)1/2

= 〈W ,S∗〉

so that 〈W ,S〉 ≥ 〈W ,S∗〉 for all feasible S. Thus, S∗ is the optimal solution to the
program underlying OPT-VB, as desired.

Proposition B.3 provides us with the targeting objective matrix used to derive
generalized Aronow–Samii bounds. As proposed in Section 3.3.5, we can re-interpret
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these variance bounds by interpreting the objective matrix to encode the raw second
moment of the potential outcomes under a generative model, i.e. W = Eθ[θθ

ᵀ
].

For example, a generative model which assumes that outcomes are uncorrelated and
mean zero would result in W = Eθ[θθ

ᵀ
] being diagonal. In particular, the diagonal

entries correspond to the variances of each individual outcome. In this way, we
may re-interpret the Aronow-Samii bound (in the no-interference settings where it is
admissible) as minimizing the expectation of the variance bound under in a generative
model where outcomes are uncorrelated and mean zero.
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Appendix C

Appendix for Bipartite Experiments
Under a Linear Exposure-Response
Assumption

C.1 Analysis of the ERL Estimator

In this section, we present proofs of consistency and asymptotic normality of ERL
estimator appearing in Section 4.3 of Chapter 4. Before continuing, we introduce
some notation used in the proofs. We begin by defining for each outcome unit i ∈ Vo,
an estimate of the individual treatment effect τi, which is

τ̂i , 2yi(z)
(xi(z)− E[xi(z)]

Var(xi(z))

)
.

Observe that the ERL estimator is the average of these estimates of the individual
treatment effects, i.e. τ̂ = (1/n)

∑n
i=1 τ̂i. Throughout the proofs, we will often reason

about the behavior of the ERL estimator through the properties of the individual
treatment effect estimates.

Next, we introduce the concept of dependency neighborhoods (Ross, 2011). Let
a1, a2, . . . an be random variables indexed by the integers [n] and collect these random
variables into the setA = {ai : i ∈ [n]}. For each variable ai, we define the dependency
neighborhood as

I(i) ⊂ A such that ai is jointly independent of the variables A \ I(i) .

In other words, a random variable ai is jointly independent of all variables not con-
tained in its dependency neighborhood, but is dependent on variables contained in
its dependency neighborhood. We take the convention that i ∈ I(i) and so that each
dependency neighborhood as cardinality at least 1. A measure of dependence between
the random variables is the maximum dependency degree, which is D = maxi∈[n]|I(i)|.
Note that independent random variables satisfyD = 1 and that completely dependent
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random variables have D = n.
For the remainder of the proof, we focus our discussion of dependency neighbor-

hoods and degrees to the collection of errors of the individual treatment effects,

a1 = τ1 − τ̂1, a2 = τ2 − τ̂2, . . . an = τn − τ̂n .

We begin by showing that in this case, the maximum dependency degree may be
bounded in terms of the degrees of the bipartite graph and the dependence in the
treatment assignments.

Lemma C.1. The dependency degree of the individual treatment effect errors is
bounded by D ≤ kdddo .

Proof. The first part of this proof is to establish a necessary condition for an individual
treatment effect error aj to be in the dependency neighborhood of ai, i.e. aj ∈ I(i).
We begin by re-writing the exposures under a cluster design. Recall that the exposures
are defined as xi =

∑m
j=1 wi,jzj. For each cluster C ∈ C, define wi,C =

∑
j∈C wi,j and

define zC to be the ±1 cluster treatment assignment variable which is 1 if diversion
units in C are treated and −1 otherwise. If wi,C 6= 0, then we say that cluster C is
incident to outcome unit i. Define S(i) = {zC : wi,C 6= 0} to be the cluster treatment
assignments which influence the exposure xi. Under the cluster design, the exposure
for outcome unit i may be written as

xi =
∑
C∈C

wi,CzC =
∑
C∈S(i)

wi,CzC .

By the linear-response assumption, the individual treatment effect error ai is a func-
tion of the exposure xi. Moreover, ai is a function of the cluster treatment assignment
variables in S(i). Let us denote this relationship by writing ai = gi(S(i)), where gi is
a function of the cluster treatment variables zC ∈ S(i). Let B ⊂ Vo be a collection of
outcome units. We remark that joint independence of cluster treatment assignments
implies joint independence of individual treatment effect errors:

S(i) ⊥⊥ {S(j) : j ∈ B} ⇒ ai ⊥⊥ {aj : j ∈ B} .

Under an independent cluster design, the cluster treatment assignments S(i) are
jointly independent of the cluster treatment assignments {S(j) : j ∈ B} when the
corresponding sets of clusters are disjoint, i.e. S(i) ∩ (∪j∈BS(j)) = ∅. Thus, the
individual treatment effect estimate ai is jointly independent of the collection of indi-
vidual treatment effect estimates {aj : j ∈ B} when outcome unit i is not incident to
any cluster that is incident to an outcome unit in B. In other words, aj ∈ I(i) only
if outcome units i and j are incident to a common cluster.

Fix an outcome unit i ∈ Vo. The remainder of the proof is a simple counting
argument which uses this necessary condition to establish that |I(i)| ≤ kdddo. In
particular, we will count the number of outcome units that are incident to one of the
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clusters that are incident to i. Because the degree of outcome unit i is at most do,
it is incident to at most do clusters. Each of these clusters has at most k diversion
units, by Assumption 4.4. Because the degree of all diversion units j is at most dd,
the number of outcome units which are incident to at least one of these clusters is at
most kdddo. Thus, we have established that

D = max
i∈Vo
|I(i)| ≤ kdddo .

The following lemma derives a lower bound the exposure variances in terms of the
treatment assignment probability and the maximum degree of the outcome units.

Lemma C.2. If each pair of treatment assignments is non-negatively correlated, then
each exposure variance is lower bounded as Var(xi) ≥ 4p(1−p)

do
.

Proof. We begin by expanding the variance of the exposure xi by

Var(xi) = Var(
m∑
j=1

wi,jzj) (definition of exposure)

=
m∑
i=1

[
Var(wi,jzj) +

∑
`6=j

Cov(wi,jzj, wi,`z`)
]

(properties of Var)

=
m∑
i=1

[
w2
i,j Var(zj) +

∑
` 6=j

wi,jwi,` Cov(zj, z`)
]

(properties of Var and Cov)

≥
m∑
i=1

w2
i,j Var(zj) (non-negativity)

= 4p(1− p)
m∑
i=1

w2
i,j ,

where the inequality follows because the weights wi,j are non-negative and the assign-
ments are non-negatively correlated and the last equality follows because zi are ±1

random variables with Pr(zi = 1) = p.
We complete the proof by lower bounding the sum of the squares of the weights.

Recall that the sum of the weights is 1 and there are at most do non-negative terms
in the sum. Using this together with the inequality that relates `2 to `1 norms in
d-dimensions, ‖·‖2

2 ≥ 1
d
‖·‖2

1, we have that

m∑
i=1

w2
i,j ≥

1

do

m∑
i=1

wi,j =
1

do
.

The following lemma is a bound on the moments of the errors of the individual
treatment effects.
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Lemma C.3. The pth moment of the error of the individual treatment effect estimates
is bounded by

E[|τi − τ̂i|p] ≤

[
2M
(

1 +
do

2p(1− p)

)]p
.

Proof. We begin by remarking that |yi(z)| ≤ M implies that each of the individual
slopes are also bounded in absolute value as |βi| ≤ M . Recall that by the linear
response assumption, yi(z) = βixi +αi and by the linear exposure assumption (along
with the normalization of the edge weights), setting z = ±1 results in an exposure
of ξ = ±1. Thus, when considering z = ±1, the bound |yi(z)| ≤ M implies that
|±βi + αi| ≤M , which is enough to establish that |βi| ≤M .

We now proceed by proving a bound on |τi − τ̂i|, which holds for any realization
of the random variables:

|τi − τ̂i| =
∣∣∣2βi − 2yi(z)

(xi − E[xi]

Var(xi)

)∣∣∣
≤ 2|βi|+ 2

|yi(z)| · |xi − E[xi]|
Var(xi)

(triangle inequality)

≤ 2M + 2
M · 2

Var(xi)
(definition of M and above)

≤ 2M
(

1 +
2

Var(xi)

)
(collecting terms)

≤ 2M
(

1 +
do

2p(1− p)

)
(Lemma C.2)

The moment bound follows by applying the bound above.

C.1.1 Expectation of the ERL estimator (Theorems 4.2 and
4.11)

In this section, we derive the expectation of the ERL estimator, both with and
without the linear exposure-response assumption. First, we derive the expectation
under the linear exposure-response assumption.

Theorem 4.2. Suppose the design is such that each exposure has a positive variance.
Under the linear response assumption, the ERL estimator is unbiased for the ATTE:
E[τ̂ ] = τ .

Proof. By linearity, the expectation of the estimator is

E[τ̂ ] =
2

n

n∑
i=1

E

[
yi(z)

(
xi(z)− E[xi(z)]

Var(xi(z))

)]
.

By Proposition 4.1, the ATTE is twice the average of the slope terms βi. Thus, to
complete the proof we show that each expectation terms inside the sum is equal to
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the corresponding slope βi. Using the linear response assumption,

E

[
yi(z)

(
xi(z)− E[xi(z)]

Var(xi(z))

)]

= E

[
(βixi(z) + αi)

(
xi(z)− E[xi(z)]

Var(xi(z))

)]

= βi E

[
xi(z)

(
xi(z)− E[xi(z)]

Var(xi(z))

)]
+ αi E

[(
xi(z)− E[xi(z)]

Var(xi(z))

)]

= βi

(
E[xi(z)2]− E[xi(z)]2

Var(xi(z))

)
+ αi

(
E[xi(z)]− E[xi(z)]

Var(xi(z))

)
= βi

Next, we derive the expectation of the ERL estimator under a general (non-linear)
response assumption.

Theorem 4.11. Assume that the potential functions are an arbitrary function of the
exposures: yi(z) = yi(xi). Then, the expectation of the ERL estimator is

E[τ̂ ] =
2

n

n∑
i=1

β̂i ,

where β̂i is the coefficient of the exposure xi in an OLS regression of yi on xi: β̂i =(Cov(xi,yi(xi))
Var(xi)

)
.

Proof. We begin by deriving the expectation of an individual term in the ERL esti-
mator. To this end, observe that

E
[
yi

(xi − E[xi]

Var(xi)

)]
=

E[yixi]− E[yi]E[xi]

Var(xi)
=

Cov(xi, yi)

Var(xi)
.

The proof is completed by linearity of expectation.

We remark that Theorem 4.2 follows from Theorem 4.11 by observing that un-
der a linear response assumption that yi = βixi + αi, we have that Cov(xi, yi) =

Cov(xi, βixi + αi) = βi Var(xi).

C.1.2 Consistency of ERL estimator (Theorem 4.5)

We are now ready to establish the consistency of the ERL estimator. Before doing
so, we restate the theorem here.

Theorem 4.5. Under Assumptions 4.3 and 4.4, and supposing that ddd3
o = o(n) in

the asymptotic sequence, the ERL estimator converges in mean square to the ATTE:
limN→∞ E[(τ̂ − τ)2] = 0.
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Proof. We begin by proving a finite sample bound on the mean squared error of the
ERL estimator, and then we finish the proof by taking the limit in the asymptotic
sequence. Note that the mean squared error may be broken down into the errors of
the individual treatment effect estimates via

E[(τ− τ̂)2] = E
[( 1

n

n∑
i=1

(τi− τ̂i)
)2]

=
1

n2

n∑
i=1

(
E[(τi− τ̂i)2]+

∑
j 6=i

E[(τi− τ̂i)(τj− τ̂j)]

)
.

Note that the term in the inner sum is the covariance of the errors in the individual
treatment effect estimators. By definition of the dependency neighborhoods, only
terms j ∈ I(i) are dependent and so only these terms will have non-zero covariance.
Using this and the second moment bound in Lemma C.3, we have that

E[(τ − τ̂)2] =
1

n2

n∑
i=1

(
E[(τi − τ̂i)2] +

∑
j∈I(i)
j 6=i

E[(τi − τ̂i)(τj − τ̂j)]

)

≤ 1

n2

n∑
i=1

(
E[(τi − τ̂i)2] +

∑
j∈I(i)
j 6=i

√
E[(τi − τ̂i)2]E[(τj − τ̂j)2]

)

≤ 1

n2

n∑
i=1

|I(i)| ·
[
2M
(

1 +
do

2p(1− p)

)]2

≤ D

n

[
2M
(

1 +
do

2p(1− p)

)]2

,

where the first equality holds by the definition of dependency neighborhoods, the
first inequality is Cauchy-Schwarz, the second inequality follows from Lemma C.3,
and the final inequality follows from the bound on the maximum dependency degree.
By using the bound D ≤ kdddo given in Lemma C.1, we have the finite-sample bound
on the mean squared error:

E[(τ − τ̂)2] ≤ kdddo
n

[
2M
(

1 +
do

2p(1− p)

)]2

We now interpret this finite-sample bound in the context of the asymptotic se-
quence. By Assumptions 4.3 and 4.4, we have that M is a constant, p is bounded
away from 0 and 1 by a constant, and k is a constant. It follows that the mean
squared error is asymptotically bounded by the rate E[(τ − τ̂)2] = O(ddd

3
o/n). By as-

sumption, the asymptotic sequence satisfies ddd3
o = o(n), and thus the mean squared

error converges to zero under these conditions.
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C.1.3 Asymptotic normality (Theorem 4.7)

We establish asymptotic normality of the ERL estimator by using Stein’s method.
In particular, we use the following result from Ross (2011):

Lemma C.4 (Lemma 3.6 of Ross (2011)). Let a1, a2, . . . an be random variables such
that E[a4

i ] < ∞, E[ai] = 0, σ2 = Var( 1
n

∑n
i=1 ai), and define X = ( 1

n

∑n
i=1 ai)/σ.

Then for a standard normal Z ∼ N (0, 1), we have

dW (X,Z) ≤ D2

σ3n3

n∑
i=1

E[|ai|3] +

√
28

π
· D

3/2

n2σ2

√√√√ n∑
i=1

E[a4
i ] ,

where D is the maximum dependency degree of the random variables and dW (·, ·) is
the Wasserstein distance.

We will use Lemma C.4 to prove asymptotic normality of the ERL estimator.
Before continuing, let us restate the theorem.

Theorem 4.7. Under Assumptions 4.3, 4.4, and 4.6, and supposing that d1.6
d d4

o =

o(n), the ERL estimator is asymptotically normal:

τ̂ − τ√
Var(τ̂)

d−→ N (0, 1) .

Proof. Our strategy may be described in two main steps: first, we use Lemma C.4 to
derive a finite-sample bound on the Wasserstein distance between the distribution of
(τ − τ̂)/

√
Var(τ̂) and a standard normal. Next, we us this bound to argue that this

Wasserstein distance approaches 0 in the limit of the asymptotic sequence under the
above conditions.

We seek to apply Lemma C.4 where the random variables are the errors of the
individual treatment effect estimates; that is,

a1 = τ1 − τ̂1, a2 = τ2 − τ̂2, . . . an = τn − τ̂n .

Note that 1
n

∑n
i=1 ai = 1

n

∑n
i=1 τi− τ̂i = τ− τ̂ and Var( 1

n

∑n
i=1 ai) = Var(τ̂) so that the

random variable X in Lemma C.4 is equal to (τ − τ̂)/
√

Var(τ̂), which is indeed the
random variable we wish to characterize. Let’s show that the conditions of Lemma C.4
are satisfied: first, recall that τ̂i are unbiased estimates of τi so that ai has mean zero.
Second, because the potential outcomes are bounded by a constant M , the support
of ai is bounded so the fourth moments are finite. Thus, we may apply Lemma C.4
in this setting.

We will use the Lemma C.3 to bound the sum of the third and fourth moments.
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In particular, Lemma C.3 implies that

n∑
i=1

E[|ai|3] ≤ n·

[
2M
(

1+
do

2p(1− p)

)]3

and
n∑
i=1

E[|ai|4] ≤ n·

[
2M
(

1+
do

2p(1− p)

)]4

.

Using this moment bound together with the bound on the maximum dependence
degree D (Lemma C.1) on the result of Lemma C.4, we obtain that the Wasserstein
distance dW

(
τ−τ̂√
Var(τ̂)

, Z
)
is at most

(kdddo)
2

σ3n2
·

[
2M
(

1 +
do

2p(1− p)

)]3

+

√
28

π
· (kdddo)

3/2

σ2n3/2
·

[
2M
(

1 +
do

2p(1− p)

)]2

.

We now interpret this finite-sample bound in the context of the asymptotic se-
quence. By Assumptions 4.3 and 4.4, we have that M is a constant, p is bounded
away from 0 and 1 by a constant, and k is a constant. It follows that the Wasserstein
distance between (τ − τ̂)/

√
Var(τ̂) and a standard normal is asymptotically bounded

as
dW

( τ − τ̂√
Var(τ̂)

, Z
)

= O
( d2

dd
5
o

σ3n2
+
d1.5
d d3.5

o

σ2n3/2

)
By Assumption 4.6, we have that Var(τ̂) = Ω(n−1/2), which means that this bound
becomes

dW

( τ − τ̂√
Var(τ̂)

, Z
)

= O
(d2

dd
5
o

n5/4
+
d1.5
d d3.5

o

n

)
.

By assumption, the asymptotic sequence satisfies d1.6
d d4

o = o(n). Raising both sides to
the 5/4 yields that d2

dd
5
o = o(n5/4). Additionally, dd and do are positive integers and

so they satisfy d1.5
d d3.5

o ≤ d1.6
d d4

o, thus d1.5
d d3.5

o = o(n). Thus, the Wasserstein distance
between (τ − τ̂)/

√
Var(τ̂) and a standard normal approaches 0 in this asymptotic

sequence.

C.2 Variance Estimation

In this section, we prove Lemmas 4.8 and 4.9, which are then used to prove Theo-
rem 4.10, which establishes unbiasedness of the proposed variance estimator.

First, we show Lemma 4.8, which demonstrates how to estimate the variance of
an individual treatment effect estimate. To do so, we need to decompose the random
variable Qi. For each outcome unit i ∈ Vo, define the random variable Ti to be the
second term in the function Qi. That is,

Ti =
Var(xi)(x

2
i − E[x2

i ])− Cov(xi, x
2
i )(xi − E[xi])

Var(xi) Var(x2
i )− Cov(xi, x2

i )
2
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so that Qi ,
(xi−E[xi])

2

Var(xi)2
− Ti. The following Lemma states the key properties of the

random variable Ti, and consequently Qi, which allow for the proof of Lemma 4.8.

Lemma C.5. If the exposure xi takes at least three values with non-zero probability,
then the function Ti satisfies the following three properties:

• E[Ti] = 0

• E[xiTi] = 0

• E[x2
iTi] = 1

Proof. For notational simplicity, we drop the subscript as write xi as x and Ti as T .
First, we will show that the denominator Var(x) Var(x2) − Cov(x, x2)2 is posi-

tive when the exposure x takes at least three values with non-zero probability. By
Cauchy-Schwarz, we have that Cov(x, x2)2 ≤ Var(x) Var(x2), which establishes that
denominator is non-negative. The Cauchy-Schwarz inequality is strict precisely when
x and x2 are not perfectly correlated, i.e. there does not exist a and b such that
x2 = ax+ b. Note that this cannot happen when x takes three distinct values. Thus,
the Cauchy-Schwarz is strict in this case so that the denominator is positive. For no-
tational convenience, we write the denominator as ∆ = Var(x) Var(x2)−Cov(x, x2)2

throughout the remainder of the proof.
We will now show the three properties. The first property follows by linearity of

expectation, as

∆ · E[T ] = E[Var(xi)(x
2 − E[x2])− Cov(x, x2)(x− E[x])]

= Var(x)(E[x2]− E[x2])− Cov(x, x2)(E[x]− E[x])

= 0 ,

and the result follows by dividing through by ∆ on both sides. Next, we show the
second property. Again, by linearity of expectation, we have that

∆ · E[xT ] = E[Var(xi)(x
3 − xE[x2])− Cov(x, x2)(x2 − xE[x])]

= Var(x)(E[x3]− E[x]E[x2])− Cov(x, x2)(E[x2]− E[x]2)

= Var(x) Cov(x, x2)− Cov(x, x2) Var(x)

= 0 ,

and the result follows by dividing through by ∆ on both sides. Finally, we show the
third property. By linearity of expectation,

∆ · E[x2T ] = E[Var(xi)(x
4 − x2 E[x2])− Cov(x, x2)(x3 − x2 E[x])]

= Var(x)(E[x4]− E[x2]2)− Cov(x, x2)(E[x3]− E[x2]E[x])

= Var(x) Var(x2)− Cov(x, x2)2

= ∆ ,
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and the result follows by dividing both sides by ∆.

We are now ready to prove Lemma 4.8, which we restate here.

Lemma 4.8. Fix an outcome unit i ∈ Vo. If the exposure xi takes at least three
values with non-zero probability, then the variance of unit i’s individual treatment
effect estimator is equal to

Var(τ̂i) = 4 · E[yi(z)2Qi] .

Proof. We may use the properties of the random variable Ti proved in Lemma C.5
together with the linear response assumption to obtain

E
[
yi(z)2Ti

]
= E

[
(βixi + αi)

2Ti

]
(linear response)

= β2
i E
[
x2
iTi

]
+ 2βiαi E

[
xiTi

]
+ α2

i E
[
Ti

]
(expanding terms)

= β2
i . (Lemma C.5)

Next, we write the variance of individual treatment effect estimator. Because the
individual treatment effect estimator is unbiased,

Var(τ̂i) = E[τ̂ 2
i ]− E[τ̂i]

2

= 4 · E
[
yi(z)2

(xi − E[xi]

Var(xi)

)2]
− 4 · β2

i

= 4 · E
[
yi(z)2

(xi − E[xi]

Var(xi)

)2]
− 4 · E

[
yi(z)2Ti

]
= 4 · E

[
yi(z)2

[(xi − E[xi]

Var(xi)

)2

− Ti
]]

= 4 · E[yi(z)2Qi] .

Next, we will prove Lemma 4.9 which demonstrates how to estimate the covariance
between two individual treatment effects. To do so, we need to decompose the random
variable Ri,j. For each pair of outcome units i, j ∈ Vo, define the random variable Si,j
to be the second term in the random variable Ri,j. That is,

Si,j =
ai,j(xixj − E[xixj]) + bi,j(xi − E[xi]) + ci,j(xj − E[xj])

Ψi,j

,
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where we recall that these coefficients are given as ai,j, bi,j, ci,j,Ψi,j are defined as

ai,j = Var(xi) Var(xj)− Cov(xi, xj)
2

bi,j = Cov(xi, xj) Cov(xixj, xj)− Var(xj) Cov(xixj, xi)

ci,j = Cov(xi, xj) Cov(xixj, xi)− Var(xi) Cov(xixj, xj)

Ψi,j = Var(xixj)(Var(xi) Var(xj)− Cov(xi, xj)
2)− Var(xi) Cov(xixj, xj)

2

− Var(xj) Cov(xixj, xi)
2 + 2 Cov(xi, xj) Cov(xixj, xj) Cov(xixj, xi) .

In this way, Ri,j , (xi−E[xi]
Var(xi)

)(
xj−E[xj ]

Var(xj)
) − Si,j. The following lemma states the key

properties of the random variable Si,j, and consequently Ri,j, which allow for the
proof of Lemma 4.9.

Lemma C.6. Fix a pair of outcome units i, j ∈ Vo. If Ψi,j 6= 0, then the random
variable Si,j satisfies the following properties:

• E[Si,j] = 0

• E[xiSi,j] = E[xjSi,j] = 0

• E[xixjSi,j] = 1

Proof. For notational simplicity, we will drop the subscripts and write xi as x, xj as
y and Si,j as S. In the same way, we will write ai,j, bi,j, ci,j, and Ψi,j as a, b, c, and Ψ.

Given that Ψ > 0, we seek to verify the three properties in the lemma. The first
is easy to verify by the linearity of expectation, as

Ψ · E[S] = E[a(xy − E[xy]) + b(x− E[x]) + c(y − E[y])]

= a(E[xy]− E[xy]) + b(E[x]− E[x]) + c(E[y]− E[y]

= 0

so that dividing both sides by Ψ yields the desired result. We now verify the second
property. Observe that

Ψ · E[xS] = a · (E[x2y]− E[x]E[xy]) + b · (E[x2]− E[x]2) + c · (E[xy]− E[x]E[y])

= a · Cov(xy, x) + b · Var(x) + c · Cov(x, y)

= Cov(xy, x)(Var(x) Var(y)− Cov(x, y)2)

+ Var(x)(Cov(x, y) Cov(xy, y)− Var(y) Cov(xy, x))

+ Cov(x, y)(Cov(x, y) Cov(xy, x)− Var(x) Cov(xy, y))

= 0 ,

and dividing both sides by Ψ yields the desired result. The proof that E[yS(x, y)] = 0

follows in exactly the same fashion. Finally, we verify the third property. Observe
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that

Ψ · E[xyS] = a · (E[(xy)2]− E[xy]2) + b · (E[x2y]− E[xy]E[x])

+ c · (E[xy2]− E[xy]E[y])

= a · Var(xy) + b · Cov(xy, x) + c · Cov(xy, y)

= Var(xy)(Var(x) Var(y)− Cov(x, y)2)

+ Cov(xy, x)(Cov(x, y) Cov(xy, y)− Var(y) Cov(xy, x))

+ Cov(xy, y)(Cov(x, y) Cov(xy, x)− Var(x) Cov(xy, y))

= Var(xy)(Var(x) Var(y)− Cov(x, y)2)

− Var(x) Cov(xy, y)2 − Var(y) Cov(xy, x)2

+ 2 Cov(x, y) Cov(xy, y) Cov(xy, x)

= Ψ ,

so that dividing both sides by Ψ yields the desired result.

Finally, we are ready to prove Lemma 4.9, which is the last result needed to
establish that the variance estimator is unbiased. We restate the lemma below.

Lemma 4.9. Fix a pair of outcome units i 6= j ∈ Vo. If Ψi,j 6= 0, then the covariance
between individual treatment effect estimates τ̂i and τ̂j may be expressed as

Cov(τ̂i, τ̂j) = 4 · E[yi(z)yj(z)Ri,j] .

Proof. We may use the properties of the random variable Si,j proved in Lemma C.6
together with the linear response assumption to obtain

E[yi(z)yj(z)Si,j] = E[(βixi + αi)(βjxj + αj)Si,j]

= βiβj E[xixjSi,j] + αiαj E[Si,j] + βiαj E[xiSi,j] + βjαi E[xjSi,j]

= βiβj ,

where the first line follows from the linear-response assumption, the second line follows
from expanding terms, and the third line follows from Lemma C.6. Next, we write the
covariance between the individual treatment effect estimators. Because the individual
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treatment effect estimators are unbiased,

Cov(τ̂i, τ̂j) = E[τ̂iτ̂j]− E[τ̂i]E[τ̂j]

= E[τ̂iτ̂j]− τiτj

= 4 · E
[
yi(z)yj(z)

(xi − E[xi]

Var(xi)

)(xj − E[xj]

Var(xj)

)]
− 4 · βiβj

= 4 · E
[
yi(z)yj(z)

(xi − E[xi]

Var(xi)

)(xj − E[xj]

Var(xj)

)]
− 4 · E[yi(z)yj(z)Si,j]

= 4 · E
[
yi(z)yj(z)

[(xi − E[xi]

Var(xi)

)(xj − E[xj]

Var(xj)

)
− Si,j

]]
= 4 · E

[
yi(z)yj(z)Ri,j

]
We are now ready to prove Theorem 4.10, which establishes unbiasedness of the

variance estimator.

Theorem 4.10. Under the conditions in Lemmas 4.8 and 4.9, the variance estimator
of the ERL point estimator is unbiased, i.e. E[V̂ar(τ̂)] = Var(τ̂).

Proof. We may calculate the expectation of the variance estimate V̂ar(τ̂) as

E[V̂ar(τ̂)] = E

[
4

n2

n∑
i=1

[
yi(z)2Qi +

∑
j 6=i

yi(z)yj(z)Ri,j

]]

=
1

n2

n∑
i=1

[
4 · E

[
yi(z)2Qi

]
+
∑
j 6=i

4 · E
[
yi(z)yj(z)Ri,j

]]

=
1

n2

n∑
i=1

[
Var(τ̂i) +

∑
j 6=i

Cov(τ̂i, τ̂j)
]

= Var(τ̂) ,

where the second equality follows by linearity of expectation and the third equality
follows from Lemmas 4.8 and 4.9.

C.3 Exposure-Design and Correlation Clustering

In this section, we prove the relationship between Exposure-Design, its reformula-
tion Corr-Clust, the previously proposed correlation clustering design of Pouget-
Abadie et al. (2019), and other correlation clustering variants. A summary of the
results are:

• In Section C.3.1, we show that the Exposure-Design may be reformulated as
the clustering problem, Corr-Clust.
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• In Section C.3.2, we compare Exposure-Design to the correlation clustering-
based design presented in Pouget-Abadie et al. (2019). In particular, we prove
that their design is equivalent to Exposure-Design when the trade-off pa-
rameter is set as φ = 1/(n− 1) and no constraint is placed on cluster sizes, i.e.
k = m.

• In Section C.3.3, we compare Corr-Clust to other correlation clustering vari-
ants. In particular, we prove that (unconstrained) Corr-Clust may be viewed
as an instance of the weighted maximization correlation clustering considered
by Charikar et al. (2005); Swamy (2004) but with a possibly large additive
constant which prevents an approximation-preserving reduction.

To begin, we demonstrate how to re-write the Corr-Clust objective using matrix
notation. Let ωi,j ∈ R be the weights for pairs i, j ∈ [m] and let Ω be the m-by-m
matrix whose (i, j)th entry is ωi,j. For a partition C of the indices [m], let ZC be the
m-by-m matrix where the (i, j)th entry is 1 if i and j are in the same cluster of C
and 0 otherwise. Then, we may express the Corr-Clust objective as

∑
Cr∈C

∑
i,j∈Cr

ωi,j =
n∑
i=1

n∑
j=1

ωi,j[ZC](i,j) = tr(Ω ZC) .

Throughout the remainder of the section, it will be useful to write the Corr-Clust
objective using this matrix notation.

C.3.1 Reformulating Exposure-Design as Corr-Clust

We are now ready to prove Proposition 4.12, which we restate here for completeness.

Proposition 4.12. For each pair of diversion units i, j ∈ Vd, define the value ωi,j ∈ R
as

ωi,j = (1 + φ)
m∑
k=1

wk,iwk,j − φ
( m∑
k=1

wk,i

)( m∑
k=1

wk,j

)
, (4.2)

where wk,i is the weight of the edge between the kth outcome unit and the ith diversion
unit. Exposure-Design is equivalent to the following clustering problem:

max
clusterings C

∑
Cr∈C

∑
i,j∈Cr

ωi,j . (Corr-Clust)

Proof. Recall that the objective of Exposure-Design is defined as

n∑
i=1

Var(xi)− φ
∑
i 6=j

Cov(xi, xj) ,

where the expectation in the variance and covariance terms is taken with respect to
the random assignment vector z ∈ {±1}m, which is drawn from the cluster design
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given by C. Recall that the exposures are given by x = Wz. Using matrix notation,
we can more compactly represent this objective as

n∑
i=1

Var(xi)− φ
∑
i 6=j

Cov(xi, xj) = tr
((
I − φ(11

ᵀ − I)
)

Cov(x)
)

= tr
((

(1 + φ)I − φ11
ᵀ)

Cov(x)
)

= tr
((

(1 + φ)I − φ11
ᵀ)

Cov(Wz)
)

= tr
((

(1 + φ)I − φ11
ᵀ)
W Cov(z)W

ᵀ
)

= tr
(
W

ᵀ(
(1 + φ)I − φ11

ᵀ)
W Cov(z)

)
where we have used properties of trace and covariance. Because z is drawn from
an independent cluster design, the (i, j)th entry of the covariance matrix Cov(z)

is 1 if diversion units i and j are in the same cluster and 0 otherwise. Thus, by
the observation above, this clustering objective is a correlation clustering where the
weights are given by the matrix

Ω = W
ᵀ(

(1 + φ)I − φ11
ᵀ)
W .

By inspection, we have that the (i, j)th entry of this matrix Ω is

ωi,j = (1 + φ)
n∑
k=1

wk,iwk,j − φ
( n∑
k=1

wk,i

)( n∑
k=1

wk,j

)
,

as desired.

C.3.2 An instance of Exposure-Design when φ = 1/(n− 1)

Now we demonstrate that the correlation clustering objective proposed in Pouget-
Abadie et al. (2019) is a special case of Exposure-Design when φ = 1/(n − 1)

and no constraint is placed on cluster sizes, i.e. k = m. Before giving the formal
statement, we re-introduce the clustering objective in that paper; that is,

max
clusterings C

E

[
n∑
i=1

(
xi −

( 1

n

n∑
j=1

xj

))2]
, (Exposure-Spread)

where the expectation is with respect to the treatment vector z ∈ {±1}m drawn
according to the independent cluster design given by C. The quantity in the expecta-
tion is a measure of the spread of the exposures. We remark that in Pouget-Abadie
et al. (2019), the exposures are called “doses” and the quantity in the expectation is
referred to as the “empirical dose variance”.
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Proposition C.7. Up to additive and multiplicative constants, Exposure-Spread
is equivalent to Exposure-Design when the trade-off parameter is set to φ = 1/(n−
1).

Proof. Let us denote the exposure spread by

Q =
n∑
i=1

(
xi −

( 1

n

n∑
j=1

xj

))2

,

Note that the exposure spread is equal to the `2 norm of the de-meaned exposure
vector x̄ = (x̄1, x̄2, . . . x̄n), where

x̄i = xi −
( 1

n

n∑
j=1

xj

)
.

The entire de-meaned exposure vector may be written as x̄ = (I − 1
n
11T )x. Using

the fact that this matrix is a projection and that the exposure vector is x = Wz, we
can write the exposure spread as

Q = ‖x̄‖2 = ‖(I − 1

n
11T )x‖2 = x

ᵀ
(I − 1

n
11T )2x

= x
ᵀ
(I − 1

n
11T )x = z

ᵀ
W

ᵀ
(I − 1

n
11T )Wz .

Finally, the expectation of the exposure spread may be written as

E[Q] = E

[
z
ᵀ
W

ᵀ
(I − 1

n
11T )Wz

]
(from above)

= E

[
tr
(
z
ᵀ
W

ᵀ
(I − 1

n
11T )Wz

)]
(trace of a scalar)

= E

[
tr
(
W

ᵀ
(I − 1

n
11T )Wzz

ᵀ
)]

(cyclic property of trace)

= tr
(
W

ᵀ
(I − 1

n
11T )W E[zz

ᵀ
]
)

(linearity of trace)

= tr
(
W

ᵀ
(I − 1

n
11T )W Cov(z)

)
+ c ,

where the value c in the last line is c = tr
(
W

ᵀ
(I − 1

n
11T )W E[z]E[z]ᵀ

)
, which

follows from Cov(z) = E[zzᵀ]−E[z]E[z]ᵀ and linearity of trace. Moreover, when the
probability of treatment assignment p is fixed, this value c is a constant with respect
to the clustering being chosen.

Observe that by setting φ = 1/(n− 1) and multiplying by a factor (n− 1)/n, the
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Exposure-Design objective becomes

n− 1

n
tr
(
W

ᵀ(
(1+

1

n− 1
)I− 1

n− 1
11

ᵀ)
W Cov(z)

)
= tr

(
W

ᵀ
(I− 1

n
11T )W Cov(z)

)
.

Thus, the Exposure-Spread objective is equivalent (up to additive and multiplica-
tive constants) to the Exposure-Design objective when φ = 1/(n− 1).

C.3.3 Comparison to other correlation clustering variants

Recall that we defined the objective of the correlation clustering variant Corr-Clust
as ∑

Cr∈C

∑
i,j∈Cr

ωi,j ,

where ωi,j is defined for each pair of diversion units i, j ∈ Vd as

ωi,j = (1 + φ)
n∑
k=1

wk,iwk,j − φ
( n∑
k=1

wk,i

)( n∑
k=1

wk,j

)
,

and wk,i is the weight of the edge between the kth outcome unit and the ith diversion
unit. Observe that the term ωi,j can take positive or negative values.

The maximization weighted correlation clustering variant considered by Charikar
et al. (2005); Swamy (2004) is defined as follows. Let G = (V,E) be a graph where
each edge e = (i, j) ∈ E has two non-negative weights: win(i, j) and wout(i, j). Given
a clustering C, an edge e = (i, j) is said to be in-cluster if i and j are in the same
cluster and out-cluster otherwise. The objective function for a given clustering is
given by ∑

in-cluster
edges e

win(e) +
∑

out-cluster
edges e

wout(e) (Corr-Clust-CS)

We now show that the Corr-Clust objective may be written as an instance of the
Corr-Clust-CS objective, but with the addition of a large additive constant. Again,
we stress that this reduction is primarily for aesthetic comparison purposes because
the appearance of the large additive constant prevents any meaningful approximation-
preserving reduction.

Proposition C.8. Our formulation Corr-Clust may be viewed as an instance
of Corr-Clust-CS with a large additive constant. More precisely, let win(i, j) =

max{0, ωi,j} and wout(i, j) = min{0, ωi,j}. For a clustering C, we have that the objec-
tives are related by

∑
Cr∈C

∑
i,j∈Cr

ωi,j −
n∑
i=1

n∑
j=1

min{0, ωi,j} =
∑

in-cluster
edges e

win(e) +
∑

out-cluster
edges e

wout(e)
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Proof. For each pair of diversion units i, j, define ω+
i,j = max{0, ωi,j} and ω−i,j =

−min{0, ωi,j}. Observe that ωi,j = ω+
i,j+ω

−
i,j and so we can re-distribute the following

sum as∑
Cr∈C

∑
i,j∈Cr

ωi,j =
∑
Cr∈C

∑
i,j∈Cr

(
ω+
i,j + ω−i,j

)
=
∑
Cr∈C

∑
i,j∈Cr

ω+
i,j +

∑
Cr∈C

∑
i,j∈Cr

ω−i,j .

Subtracting the (instance-dependent) constant
∑n

i=1

∑n
j=1 min{0, ωi,j} from both sides

and rearranging yields

∑
Cr∈C

∑
i,j∈Cr

ωi,j −
n∑
i=1

n∑
j=1

min{0, ωi,j}

=
∑
Cr∈C

∑
i,j∈Cr

ω+
i,j +

∑
Cr∈C

∑
i,j∈Cr

ω−i,j −
n∑
i=1

n∑
j=1

min{0, ωi,j}

=
∑
Cr∈C

∑
i,j∈Cr

ω+
i,j −

∑
Cr 6=C′r∈C

∑
i∈Cr
j∈C′r

ω−i,j

=
∑
Cr∈C

∑
i,j∈Cr

ω+
i,j +

∑
Cr 6=C′r∈C

∑
i∈Cr
j∈C′r

(−ω−i,j)

=
∑

in-cluster
edges e

win(e) +
∑

out-cluster
edges e

wout(e) .

Finally, observe that for each pair (i, j), the values win(i, j) and wout(i, j) are non-
negative so that the final equation is a valid objective function for the Corr-Clust-
CS formulation.
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